Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-22T13:29:18.475Z Has data issue: false hasContentIssue false

Development of a physically-based planar inductors VHDL-AMS model for integrated power converter design

Published online by Cambridge University Press:  05 June 2014

Aymen Ammouri
Affiliation:
University of Tunis El Manar, ENIT, L.S.E – B.P. 37, Tunis Le Bélvédère 1002, Tunisia
Walid Ben Salah
Affiliation:
University of Tunis El Manar, ENIT, L.S.E – B.P. 37, Tunis Le Bélvédère 1002, Tunisia
Sofiane Khachroumi
Affiliation:
University of Tunis El Manar, ENIT, L.S.E – B.P. 37, Tunis Le Bélvédère 1002, Tunisia
Tarek Ben Salah*
Affiliation:
University of Tunis El Manar, ENIT, L.S.E – B.P. 37, Tunis Le Bélvédère 1002, Tunisia
Ferid Kourda
Affiliation:
University of Tunis El Manar, ENIT, L.S.E – B.P. 37, Tunis Le Bélvédère 1002, Tunisia
Hervé Morel
Affiliation:
Université de Lyon, INSA-Lyon, Lab. Ampere, CNRS, Lyon-Villeurbanne 63100, France
Get access

Abstract

Design of integrated power converters needs prototype-less approaches. Specific simulations are required for investigation and validation process. Simulation relies on active and passive device models. Models of planar devices, for instance, are still not available in power simulator tools. There is, thus, a specific limitation during the simulation process of integrated power systems. The paper focuses on the development of a physically-based planar inductor model and its validation inside a power converter during transient switching. The planar inductor model remains a complex device to model, particularly when the skin, the proximity and the parasitic capacitances effects are taken into account. Heterogeneous simulation scheme, including circuit and device models, is successfully implemented in VHDL-AMS language and simulated in Simplorer platform. The mixed simulation results has been favorably tested and compared with practical measurements. It is found that the multi-domain simulation results and measurements data are in close agreement.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Stalf, S., IEEE Trans. Consum. Electron. 47, 3 (2001)CrossRef
Dong, H., Zhu, Y.-S., Chen, W.-K., Journal of Circuits, Systems, and Computers 18, 6 (2009)CrossRef
Chung, J., Hamedi-Hagh, S., International Journal of Microwave Science and Technology 2008, A-7 (2008)CrossRef
Chung, T.-H., Kang, H.-D., Song, T.-L., Yook, J.-G., Microw. Opt. Technol. Lett. 55, 2 (2013)
Pêcheux, F., Lallement, C., Vachoux, A., IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 24, 204 (2005)CrossRef
Grover, F., Inductance Calculations: Working Formulas and Tables (Van Nostrand, New York 1946)Google Scholar
Greenhouse, H.M., IEEE Trans. Parts Hybrids Packag. 10, 2 (1974)
Kang, K., Shi, J., Yin, W.-Y., Li, L.-W., Zouhdi, S., Rustagi, S.C., Mouthaan, K., IEEE Trans. Magn. 43, 7 (2007)
Jenei, S., Nauwelaers, B.K.J.C., Decoutere, S., IEEE J. Solid-State Circuits 37, 1 (2002)CrossRef
Huo, X., Chan, P.C.H., Chen, K.J., Luong, H.C., IEEE Trans. Electron Devices 53, 12 (2006)CrossRef
Kuhn, W.B., Ibrahium, N.M., IEEE Trans. Microwave Theor. Tech. 49, 1 (2001)CrossRef
Kałuża, M., Napieralski, A., Bull. Pol. Acad. Sci. tech. Sci. 56, 1 (2008)
Yue, S.P., Wong, S.S., IEEE Trans. Electron Devices 47, 3 (2000)CrossRef
Melati, R., Hamida, A., Thierry, L., Derkaoui, M., Math. Comput. Model. 57, 1 (2013)CrossRef
Huang, F., Lu, J., Jiang, N., Microw. Opt. Technol. Lett. 48, 7 (2006)
Ben Salah, T., Morel, H., Mtimet, S., Eur. Phys. J. Appl. Phys. 52, 20301 (2010)CrossRef
Ben Salah, T., Lahbib, Y., Morel, H., Eur. Phys. J. Appl. Phys. 48, 30305 (2009)CrossRef