Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-22T10:52:03.540Z Has data issue: false hasContentIssue false

Comparison of various anodization and annealing conditions of titanium dioxide nanotubular film on MB degradation

Published online by Cambridge University Press:  22 April 2009

R. Mohammadpour
Affiliation:
Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 14588-89694 Tehran, Iran
A. Iraji zad*
Affiliation:
Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 14588-89694 Tehran, Iran Department of Physics, Sharif University of Technology (INST), 11365-9161 Tehran, Iran
M. M. Ahadian
Affiliation:
Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 14588-89694 Tehran, Iran
N. Taghavinia
Affiliation:
Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 14588-89694 Tehran, Iran Department of Physics, Sharif University of Technology (INST), 11365-9161 Tehran, Iran
A. Dolati
Affiliation:
Department of Materials Science & Engineering, Sharif University of Technology, 11365-9466 Tehran, Iran
Get access

Abstract

In this study the influence of morphology of vertically oriented titanium oxide nanotube arrays (TNTAs) on their photocatalytic activities was investigated. To obtain nanotubes with different morphologies, they were prepared at different anodization voltages. The size of TNTAs were measured using SEM images and also determined based on a non-destructive optical method; We demonstrate how the tubular geometry of the TNTAs can be used to adjust the optical and also the wetting properties of them and how these properties affect the performance of the nanostructure in further applications as a photocatalyst. To investigate their potentials for environmental applications, the photocatalytic activity of TNTAs in methylene blue (MB) aqueous solution was evaluated and compared to the behavior of porous TiO2 layers; we have found that the nanotubular TiO2 electrodes have considerably better photocatalytic performance in comparison with porous samples and the photocatalytic activity of TNTA was strongly dependent on the crystallographic structure and morphology.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adachi, M., Murata, Y., Harada, M., Yushikawa, Y., Chem. Lett. 29, 942 (2000) CrossRef
Chu, S.Z., Inoue, S., Wada, K., Li, D., Haneda, H., Awatsu, S., J. Phys. Chem. B 107, 6586 (2003) CrossRef
Paulose, M., Shankar, K., Vargese, O.K., Mor, G.K., Hardin, B., Grimes, C.A., Nanotechnology 17, 1 (2006)
Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., Grimes, C.A., Nano Lett. 6, 215 (2006) CrossRef
Mor, G.K., Varghese, O.K., Paulose, M., Ong, K.G., Grimes, C.A., Thin Solid Films 496, 42 (2006) CrossRef
Kar, A., Raja, K.S., Misra, M., Surf. Coat. Technol. 201, 3723 (2006) CrossRef
Gong, D., Grimes, C.A., Varghese, O.K., J. Mater. Res. 16, 3331 (2001) CrossRef
Frank, A.J., Kopidakis, N.J., Coord. Chem. Rev. 248, 1165 (2004) CrossRef
Mor, G.K., Shankar, K., Paulose, M., Shankar, K., Grimes, C.A., Sol. Energy Mater. Sol. Cells 90, 2011 (2006) CrossRef
Zhu, K., Neale, N.R., Miedaner, A., Frank, A.J., Nano Lett. 7, 69 (2007) CrossRef
Paulose, M., Varghese, O.K., Mor, G.K., Grimes, C.A., Ong, K.G., Nanotechnology 17, 398 (2006) CrossRef
Hahn, R., Ghicov, A., Tsuchiya, H., Macak, J.M., Munoz, G., Schmuki, P., Phys. Stat. Sol. A 204, 1281 (2007) CrossRef
Quan, X., Yang, S., Ruan, X., Zhao, H., Environ. Sci. Technol. 39, 3370 (2005) CrossRef
Ong, K.G., Varghese, O.K., Mor, G.K., Grimes, C.A., J. Nanosci. Nanotechnol. 5, 1801 (2005) CrossRef
Bestetti, M., Franz, S., Cuzzolin, M., Arosio, P., Cavallotti, P.L., Thin Solid Films 515, 5253 (2007) CrossRef
Macak, J.M., Zlamal, M., Krysa, J., Schmuki, P., Small 3, 300 (2007) CrossRef
Bauer, S., Kleber, S., Schmuki, P., Electrochem. Commun. 8, 1321 (2006) CrossRef
Kar, A., Raja, K.S., Misra, M., Surf. Coat. Technol. 201, 3723 (2006) CrossRef
Raja, K.S., Misra, M., Paramguru, K., Electochim. Acta 51, 154 (2005) CrossRef
Macak, J.M., Tsuchiya, H., Schmuki, P., Angew. Chem. Int. Ed. 44, 2100 (2005) CrossRef
Li, A.P., Muller, F., Briner, A., Nielsh, K., Gosele, U., J. Appl. Phys. 84, 6023 (1998) CrossRef
Thamida, S.K., Chang, H.C., Chaos 12, 240 (2002) CrossRef
Ghiocov, A., Tsuchiya, H., Macak, J.M., Schmuki, P., Electrochem. Commun. 7, 505 (2005) CrossRef
Yang, Z., Zhu, D., Lu, D., Zhao, M., Ning, N., Liu, Y., Opt. Quant. Electron. 35, 1133 (2003) CrossRef
Bellan, B., Radhakrishna, S., J. Mater. Sci. Lett. 4, 767 (1985)
Varghese, O.K., Gong, D., Paulose, M., Grimes, C.A., Dickey, E.C., J. Mater. Res. 18, 156 (2003) CrossRef
Macak, J.M., Aldabergerova, S., Ghicov, A., Schmuki, P., Phys. Stat. Sol. A 203, R67 (2006) CrossRef
J. Chastain, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, 1992)
Wenzel, R.N., Ind. Eng. Chem. 28, 988 (1936) CrossRef
Bersnek, R., Tsuchiya, H., Sugishima, T., Macak, J.M., Taveira, L., Fujimoto, S., Kisch, H., Schmuki, P., Appl. Phys. Lett. 87, 243114 (2005) CrossRef
Chu, S., Inoue, S., Wada, K., Hishita, S., Kurashima, K., Adv. Funct. Mater. 15, 1343 (2005) CrossRef
Mor, G.K., Shankar, K., Varghese, O.K, Grimes, C.A., Dickey, E.C., J. Mater. Res. 19, 2989 (2004) CrossRef
Linsebigler, A.L., Lu, G., Yate, J.T., Chem. Rev. 95, 735 (1995) CrossRef
Mills, A., Hunte, S.L., J. Photochem. Photobiol. A 108, 1 (1997) CrossRef
Lai, Y., Sun, L., Chen, Y., Zhuang, H., Lin, C., Chin, J.W., J. Electrochem. Soc. 153, D123 (2006) CrossRef