Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T22:37:10.864Z Has data issue: false hasContentIssue false

A comparative study of the field emission properties of aligned carbon nanostructures films, from carbon nanotubes to diamond

Published online by Cambridge University Press:  21 March 2007

F. Le Normand*
Affiliation:
IPCMS/GSI, UMR 7504 CNRS, bât. 69, 23 rue du Loess, P.O. Box 43, 67034 Strasbourg Cedex 2, France
C. S. Cojocaru
Affiliation:
IPCMS/GSI, UMR 7504 CNRS, bât. 69, 23 rue du Loess, P.O. Box 43, 67034 Strasbourg Cedex 2, France
C. Fleaca
Affiliation:
IPCMS/GSI, UMR 7504 CNRS, bât. 69, 23 rue du Loess, P.O. Box 43, 67034 Strasbourg Cedex 2, France
J. Q. Li
Affiliation:
IPCMS/GSI, UMR 7504 CNRS, bât. 69, 23 rue du Loess, P.O. Box 43, 67034 Strasbourg Cedex 2, France
P. Vincent
Affiliation:
THALES R&T, Départementale 128, 91747 Palaiseau Cedex, France
G. Pirio
Affiliation:
THALES R&T, Départementale 128, 91747 Palaiseau Cedex, France
L. Gangloff
Affiliation:
THALES R&T, Départementale 128, 91747 Palaiseau Cedex, France
Y. Nedellec
Affiliation:
THALES R&T, Départementale 128, 91747 Palaiseau Cedex, France
P. Legagneux
Affiliation:
THALES R&T, Départementale 128, 91747 Palaiseau Cedex, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The electron field emission properties of different graphitic and diamond-like nanostructures films are compared. They are prepared in the same CVD chamber on SiO2/Si(100) and Si(100) flat surfaces, respectively. These nanostructures are thoroughly characterized by scanning electron emission (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). Films of dense aligned carbon nanotubes by far display the lowest threshold fields around few V/$\mu $m and the largest emission currents. Carbon nanofibers, with platelet arrangement of the graphitic planes parallel to the substrate, exhibit higher emission thresholds around 10 V/$\mu $m. Diamond nanostructures, either modified through ammonia incorporation within the gas phase or not, exhibit the largest emission threshold around 25 V/$\mu $m. The high enhancement factors, deduced from the Fowler-Nordheim plots, can explain the low emission thresholds whereas limitations to the electron transport ever occur through different processes (i) surface modifications of the surface, as the transformation of the SiO2 barrier layer into SiNx in the presence of ammonia evidenced by XPS; (ii) different orientation of the graphitic basal planes relative to the direction of electron transport (carbon nanofiber) and (iii) presence of a graphitic nest at the interface of the carbon nanostructure and the substrate, observed when catalyst is deposited through mild evaporation.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

References

Bonard, J.M., Kind, H., Stockli, T., Nilsson, L.-O., Solid State Electron. 45, 893 (2001) CrossRef
Fransen, M.J., van Rooy, T.L., Kruit, P., Appl. Surf. Sci. 146, 312 (1999) CrossRef
De Heer, W.A., Bonard, J.M., Z. Phys. D 40, 418 (1997) CrossRef
Bonard, J.M., Stockli, T., Maier, F., de Heer, W.A., Chatelain, A., Salvetat, J.P., Forro, L., Phys. Rev. Lett. 81, 1441 (1998) CrossRef
Purcell, S.T., Vincent, P., Journet, C., Binh, V.T., Phys. Rev. Lett. 88, 105502 (2002) CrossRef
Groening, O., Kuttel, O.M., Emmenegger, C., Groening, P., Schlapbach, L., J. Vac. Sci. Technol. B 18, 665 (2000) CrossRef
V.V. Zhirnov, O. Groning, O.M. Kuttel, A. Alimova, P.Y. Detkov, P.I. Belobrov, E. Maillard-Schaller, L. Schlapbach, J. Vac. Sci. Technol. B 17, 666, (1999)
Obraztsov, A.N., Volkov, A.P., Pavlovskii, I. Yu., Rakova, E.V., Nagovitsyn, S.P., J. Electrochem. Soc. 145, 2572 (1998) CrossRef
Obraztsov, A.N., Volkov, A.P., Pavlovskii, I. Yu, JETP Lett. 68, 59 (1998) CrossRef
T.W. Ebbesen, in Carbon Nanotubes: Preparation and Properties, edited by T.W. Ebbesen (CRC Press, Boca Raton, 1997)
Ajayan, P.M., Chem. Rev. 99, 1787 (1999) CrossRef
Zhu, W., Bower, C., Zhou, O., Kochanski, G., Jin, S., Appl. Phys. Lett. 75, 873 (1999) CrossRef
Zhirnov, V.V., Hren, J.J., MRS Bull. 09, 42 (1998) CrossRef
Geis, M.W., Twichell, J.C., Lyszczarz, T.M., J. Vac. Sci. Technol. B 14, 2060 (1996) CrossRef
Groning, O., Nilsson, L.O., Groning, P., Schlapbach, L., Solid State Electron. 45, 929 (2001) CrossRef
Larijani, M., Cojocaru, C.S., Misra, D.S., Singh, M.K., Veis, P., Le Normand, F., Diam. Relat. Mater. 13, 270 (2004)
Cojocaru, C.S., Le Normand, F., J. Nanosci. Nanotechnol. 6, 1 (2006) CrossRef
Cojocaru, C.S., Le Normand, F., Thin Solid Films 515, 53 (2006) CrossRef
Chen, Y., Wang, Z.L., Yin, Y.S., Johnson, D.J., Prince, R.H., Chem. Phys. Lett. 272, 178 (1997) CrossRef
Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., Provencio, P.N., Science 282, 1105 (1998) CrossRef
Chen, Y., Ye, Y., Guo, L., Patel, S., Shaw, D.T., Appl. Phys. Lett. 73, 2119 (1998) CrossRef
Huang, Z.P., Xu, J.W., Ren, Z.F., Wang, J.H., Siegal, M.P., Provencio, P.N., Appl. Phys. Lett. 73, 3845 (1998) CrossRef
Chen, Y., Guo, L., Patel, S., Shaw, D.T., J. Mater. Sci. 35, 5517 (2000) CrossRef
Han, J.H., Yang, W.S., Yoo, J.B., Park, C.Y., Surf. Coat. Tech. 131, 93 (2000) CrossRef
Han, J.H., Yang, W.S., Yoo, J.B., Park, C.Y., J. Appl. Phys. 88, 7363 (2000) CrossRef
Hayashi, Y., Negishi, T., Nishino, S., J. Vac. Sci. Technol. A 19, 1796 (2001) CrossRef
Huang, Z.P., Wen, J.G., Sennett, M., Gibson, H., Ren, Z.F., Wang, D.Z., Appl. Phys. A 74, 387 (2002) CrossRef
Ch. Taschner, F. Pacal, A. Leonhardt, P. Spatenka, K. Bartsch, A. Graff, R. Kaltofen, Surf. Coat. Tech. 174, 81 (2003) CrossRef
Cruden, B.A., Meyyappan, M., Ye, Q., Cassell, A., J. Appl. Phys. 94, 4070 (2003) CrossRef
Shimizu, Y., Sasaki, T., Kodaira, T., Kawaguchi, K., Terashima, K., Koshizaki, N., Diam. Relat. Mater. 14, 11 (2005) CrossRef
Han, J.H., Kim, H.J., Yang, C.W., Yang, W.S., Song, Y.H., Nam, K.S., Yoo, J.B., Park, C.Y., Mat. Sci. Eng. C 16, 65 (2001) CrossRef
Cojocaru, C.S., Kim, D., Pribat, D., Bouree, J.E., Thin Solid Films 501, 227 (2006) CrossRef
B. Vigolo, C.S. Cojocaru, J. Faerber, J. Arabski, F. Le Normand, J. Nanosci. Nanotechnol., to be published
Arnault, J.C., Demuynck, L., Speisser, C., Le Normand, F., Eur. J. Phys. Chem. B 11, 327 (1999) CrossRef
Pirio, G., Legagneux, P., Pribat, D., Teo, K.B.K., Chhowalla, M., Amaratunga, G.A.J., Milne, W.I., Nanotechnology 13, 1 (2002) CrossRef
J.M. Bonard, in Understanding carbon nanotubes. From basics to application, edited by A. Loiseau et al. (Springer, Berlin 2006)
Brodie, M., Spindt, J., J. Appl. Phys. 47, 5248 (1976)
J. Mulder, in Handbook of X-ray photoelectron spectroscopy (Perkin Elmer, 1982), p. 147
Wei, Y., Xie, C., Dean, K.A., Coll, B.F., Appl. Phys. Lett. 79, 4527 (2001) CrossRef
Wang, Z.L., Gao, R.P., De Heer, W.A., Poncharal, P., Appl. Phys. Lett. 80, 856 (2002) CrossRef
Utsumi, T., IEEE T. Electron Dev. 38, 2276 (1991) CrossRef
P. Bernier, S. Lefrant, Le carbone dans tous ses états (Gordon and Breach Science Publ., Amsterdam, 1997), p. 24
Z.Q. Li, M. Gulas, B. Prevot, C.S. Cojocaru, F. Le Normand (in preparation)
Jin, S., Moustakas, T.D., Appl. Phys. Lett. 65, 403 (1994) CrossRef
Locher, R., Wild, C., Herres, N., Behr, D., Koidl, P., Appl. Phys. Lett. 65, 34 (1994) CrossRef
Cao, G.Z., Schermer, J.J., Van Enckevort, W.J.P., Elst, W.A.L.M., Giling, L.J., J. Appl. Phys. 79, 1357 (1996) CrossRef