Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-30T13:21:16.907Z Has data issue: false hasContentIssue false

Charging regime of PMMA studied by secondary electron emission

Published online by Cambridge University Press:  08 November 2006

M. Boubaya
Affiliation:
Laboratoire de Physique des Solides, Bât. 510, Université Paris XI, 91405 Orsay, France
G. Blaise*
Affiliation:
Laboratoire de Physique des Solides, Bât. 510, Université Paris XI, 91405 Orsay, France
Get access

Abstract

Foils of Polymethyl methacrylate (PMMA) 2 mm thick were studied by measuring the total Secondary Electron Emission yield $\sigma $ (SEE yield) in a dedicated Scanning Electron Microscope especially equipped to study the fundamental aspects of the charge transport and trapping in insulating materials. The intrinsic SEE yield $\sigma _{0}$, (yield of the uncharged material) and the charging kinetics were studied under low current density $J=10^{+5 }$ pA/cm2. The curve of the primary beam energy variation of $\sigma _{0}$ exhibits a maximum intrinsic yield $\sigma _{\rm 0max}= 2.2$ at 370 ± 20 eV and two crossover energies $E_{I}=84$± 20 eV and $E_{II }=1465$± 20 eV for which $\sigma _{0} = 1$. For $\sigma _{0} >$ 1 PMMA is positively charged and negatively for $\sigma _{0} <$ 1. As electron injection is proceeding under the low current density used, the SEE yield varies from $\sigma _{0}$ to the steady value $\sigma _{st}=1$. This value that expresses the equality between the average number of emitted and injected electrons, characterizes the steady charge regime called “Self-Regulated Regime”. The evolution of $\sigma $ during the injection process is due to the internal field that blocks or enhances the secondary electron emission, according to the positive or negative nature of the trapped charges. A current density effect, characterized by a steady SEE yield slightly higher than unity, $\sigma _{st }=1.03$, instead of one, is observed at high energy (for example 4000 eV) for a strong current density $J>10^{+6 }$ pA/cm2. It is interpreted by a field ionisation (Poole-Frenkel type) that enhances the secondary electron emission.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chinaglia, D.L., Hassle, R., Oliveira Jar, O.N., Polym. Degrad. Stabil. 74, 97 (2001) CrossRef
Rocco, M.L.M., Weibel, D.E., Pontes, F.C., Pinho, R.R., Faraudo, G S., de Souza, G.G.B., Polym. Degrad. Stabil. 80, 263 (2003) CrossRef
Blaise, G., J. Electrostat. 50, 69 (2001) CrossRef
Hourquebie, P., Marsacq, D., Vallayer, B., Olmedo, L., Janah, H., IEEE Dielectr. Electr. Insulation 1, 165 (1996)
G. Blaise, C. Le Gressus, High Voltage Vacuum Insulation, edited by R. Latham (Academic Press, 1995), pp. 329–368
Xie, X., Agarwal, V.K., IEEE Dielectr. Electr. Insulation 1, 262 (1996)
Blaise, G., Le Gressus, C., C.R. Acad. Sci. II 314, 1017 (1992)
Tatro, S.R., Baker, G.R., Bisht, K., Harmon, J.P., Polymer 44, 167 (2003) CrossRef
G. Damamme, Proceedings of the 4th International Conference on Electric Charges in Non-Conductive Materials, Tours, France, 2001 (Société Française du Vide, Science, Technique et Applications, Numéro Spécial, Paris, France, 2001)
Cangialosi, D., Fuochi, P., Lavalle, M., McGrail, P.T., Emmerson, G., Spadaro, G., Radiat. Phys. Chem. 63, 63 (2002) CrossRef
Gong, H., Ong, C.K., J. Appl. Phys. 75, 449 (1994) CrossRef
Wintle, H.J., J. Appl. Phys. 86, 5961 (1999) CrossRef
Cazaux, J., Electron Spectrosc. Rel. Phen. 105, 155 (1999) CrossRef
Butler, J.H., Joy, D.C., Bradley, G.F., Krause, S.J., Polymer 36, 1781 (1995) CrossRef
Joy, D.C., Joy, C.S., Micron 27, 247 (1996) CrossRef
Seiler, H., J. Appl. Phys. 54, R1 (1983) CrossRef
H. Bruining, in Physics and Applications of Secondary Electron Emission (McGraw-Hill Book Co., Inc., New York, 1954)
Heydt, H.L., Rev. Sci. Instrum. 21, 639 (1950) CrossRef
Johnson, J.B., McKay, M.G., Phys. Rev. 91, 582 (1953) CrossRef
Sternglass, E.J., Phys. Rev. 95, 345 (1954) CrossRef
Kazantsev, A.P., Matskevich, T.L., Sov. Phys. Solid State 6, 1898 (1965)
Willis, R.F., Skinner, D.K., Solid State Commun. 13, 685 (1973) CrossRef
von Seggern, H., IEEE T. Nucl. Sci. 32, 1503 (1985) CrossRef
Gross, B., von Seggern, H., Berraissoul, A., IEEE T. Dielect. El. In. 22, 23 (1987)
Gross, B., Hessel, R., IEEE T. Dielect. El. In. 26, 18 (1991)
Song, Z.G. et al., Appl. Surf. Sci. 119, 16 (1997) CrossRef
D. Braga, G. Blaise, B. Poumellec, G.I.T. Imaging Microscopy 28 (2003)
G. Blaise, D. Braga, Proceedings of the 4th International Conference on Electric Charges in Non-Conductive Materials, Tours, France, 2001 (Société Française du Vide, Science, Technique et Applications, Numéro Spécial, Paris, France, 2001), pp. 326–329
Sessler, G.M., IEEE T. Dielect. El. In. 4, 614 (1997) CrossRef
Sessler, G.M., IEEE T. Dielect. El. In. 27, 961 (1992)
Matskevich, T.L., Fiz. Tverd. Tela. Adad. Nauk, SSSR 1, 277 (1959)
Wills, R.F., Skinner, D.K., Solid State Commun. 13, 685 (1973) CrossRef
A.J. Dekker, Solid state physics (Academic Press, New York, 1999), Vol. 6
E.A. Burke, IEEE T. Nucl. Sci. NS-27, 6 (1980)
Whetten, N. Rey, J. Appl. Phys. 35, 3279 (1964) CrossRef
Salow, H.Z., Tech. Phys. 21, 8 (1940)
Bibyk, S.B., Kapoor, V.J., J. Appl. Phys. 56, 1070 (1984) CrossRef
Meunier, M., Quirke, N., J. Chem. Phys. 113, 369 (2000) CrossRef
M. Meunier, N. Quirke, A. Aslanides, 2000 IEEE Conference on Electrical Insulation and Dielectric Phenomena, Vancouver, Oct. 2000
Boughariou, et al., J. Appl. Phys. 95, 4117 (2004) CrossRef
Yeargan, J.R., Taylor, H.L., J. Appl. Phys. 39, 5600 (1968) CrossRef
Simmons, J.G., Phys. Rev. 155, 657 (1967) CrossRef