Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-26T09:41:30.699Z Has data issue: false hasContentIssue false

Characterization of plasma-induced phenol advanced oxidation process in a DBD reactor

Published online by Cambridge University Press:  21 July 2011

E. Marotta
Affiliation:
Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
E. Ceriani
Affiliation:
Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
V. Shapoval
Affiliation:
Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
M. Schiorlin
Affiliation:
Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
C. Ceretta
Affiliation:
Dipartimento di Ingegneria Elettrica, Università degli Studi di Padova, via Gradenigo 6, 35131 Padova, Italy
M. Rea
Affiliation:
Dipartimento di Ingegneria Elettrica, Università degli Studi di Padova, via Gradenigo 6, 35131 Padova, Italy
C. Paradisi*
Affiliation:
Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
Get access

Abstract

Using phenol as a model organic pollutant we studied and characterized an innovative advanced oxidation process in water using a prototype dielectric barrier discharge (DBD) reactor in which electrical discharges are produced in the air above the water surface. Phenol is decomposed quite efficiently in this reactor operated at room temperature and atmospheric pressure. The process selectivity to form CO2 is, however, to be improved since a large fraction of the treated organic carbon is unaccounted for. The rate of phenol conversion increases linearly with the reciprocal of the pollutant initial concentration, suggesting the operation of a mechanism of inhibition by products as found earlier for oxidation of volatile organic pollutants in air plasmas.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fridman, A., Plasma Chemistry (Cambridge University Press, Cambridge, 2008)CrossRefGoogle Scholar
Sunka, P., Babicky, V., Clupek, M., Lukes, P., Simek, M., Schmidt, J., Cernak, M., Plasma Sources Sci. Technol. 8, 258 (1999)CrossRef
Sun, B., Sato, M., Clements, J.S., Environ. Sci. Technol. 34, 509 (2000)CrossRef
Locke, B.R., Sato, M., Sunka, P., Hoffmann, M.R., Chang, J.-S., Ind. Eng. Chem. Res. 45, 882 (2006)CrossRef
Dors, M., Metel, E., Mizeraczyk, J., Int. J. Plasma Environ. Sci. Technol. 1, 76 (2007)
Brisset, J.L., J. Appl. Electrochem. 27, 179 (1997)CrossRef
Sano, N., Kawashima, T., Fujikawa, J., Fujimoto, T., Kitai, T., Kanki, T., Toyoda, A., Ind. Eng. Chem. Res. 41, 5906 (2002)CrossRef
Grabowski, L.R., van Veldhuizen, E.M., Pemen, A.J.M., Rutgers, W.R., Plasma Chem. Plasma Process. 26, 3 (2006)CrossRef
Sato, M., Tokutake, T., Ohshima, T., Sugiarto, A.T., IEEE Trans. Ind. Appl. 44, 1397 (2008)CrossRef
Lukes, P., Appleton, A.T., Locke, B.R., IEEE Trans. Ind. Appl. 40, 60 (2004)CrossRef
Grymonpre, D.R., Finney, W.C., Clark, R.J., Locke, B.R., Ind. Eng. Chem. Res. 43, 1975 (2004)
Burlica, R., Locke, B.R., IEEE Trans. Ind. Appl. 44, 482 (2008)CrossRef
Sano, N., Yamamoto, D., Kanki, T., Toyoda, A., Ind. Eng. Chem. Res. 42, 5423 (2003)CrossRef
Ognier, S., Iya-sou, D., Fourmond, C., Cavadias, S., Plasma Chem. Plasma Process. 29, 261 (2009)CrossRef
Zazo, J.A., Casas, J.A., Mohedano, A.F., Gilarranz, M.A., Rodriäguez, J.J., Environ. Sci. Technol. 39, 9295 (2005)CrossRef
Marotta, E., Schiorlin, M., Ren, M., Rea, M., Paradisi, C., Plasma Process. Polym. DOI: 10.1002/ppap.201100036
Slater, C., Douglas-Hamilton, D.H., J. Appl. Phys. 52, 5820 (1981)CrossRef
Marotta, E., Schiorlin, M., Rea, M., Paradisi, C., J. Phys. D: Appl. Phys. 43, 124011 (2010)CrossRef