Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T19:10:10.625Z Has data issue: false hasContentIssue false

Breakdown voltage analysis of neutron irradiated silicon detectors

Published online by Cambridge University Press:  03 October 2003

A. Bhardwaj
Affiliation:
Centre for Detector and Related Software Technology, University of Delhi, India
K. Ranjan
Affiliation:
Centre for Detector and Related Software Technology, University of Delhi, India
Namrata
Affiliation:
Centre for Detector and Related Software Technology, University of Delhi, India
S. Chatterji
Affiliation:
Centre for Detector and Related Software Technology, University of Delhi, India
A. K. Srivastava
Affiliation:
Centre for Detector and Related Software Technology, University of Delhi, India
A. Kumar
Affiliation:
Centre for Detector and Related Software Technology, University of Delhi, India
M. K. Jha
Affiliation:
Centre for Detector and Related Software Technology, University of Delhi, India
R. K. Shivpuri*
Affiliation:
Centre for Detector and Related Software Technology, University of Delhi, India Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India
Get access

Abstract

The very intense radiation environment of high luminosity future colliding beam experiments (LHC, etc.) makes radiation hardness the most important issue for Si detectors. The crucial question is whether the Si strip detectors can withstand the harsh radiation environment for sufficiently long time (full LHC lifetime) and hence the central issue concerning all LHC experiments is the breakdown performance of these detectors. In this paper the simulations have been performed to analyze electrical parameters for the most deleterious long-term effect of radiation: the change in effective charge carrier concentration and resulting increase in full depletion bias. Detailed calculations using Hamburg Model have allowed the parameterization of these effects, and helped to simulate the operation scenario of Si detectors over 10 years of LHC operation. The systematic studies of the electric field to get an insight into the device behavior provide, for the first time, a possible explanation for the improvement in breakdown performance with radiation. Simulation study is also carried on optimized guard ring structures to study the change in guard voltage distribution after 10 years of neutron radiation damage.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

The CMS Collaboration: Technical Proposal, CERN/LHCC 94-38 (1994) and references therein
RD-20 Status Report, CERN/DRDC 94-39 (2000) and references therein
Barberis, E., et al., Nucl. Instrum. Methods A 342, 90 (1994) CrossRef
Ohsugi, T., et al., Nucl. Instrum. Methods A 342, 22 (1994) CrossRef
Wunstorf, R., et al., Nucl. Instrum. Methods A 377, 290 (1996) CrossRef
Wheadon, R., et al., Nucl. Instrum. Methods A 348, 449 (1994) CrossRef
Hall, G., Nucl. Instrum. Methods A 368, 199 (1995) CrossRef
Lindstorm, G., et al., Nucl. Instrum. Methods A 426, 1 (1999) CrossRef
H. Fieck, Ph.D. thesis, University Hamburg, 1997, DESY F35D-97-08
RD 48 Status Report, CERN/LHCC 2000-009, Dec. (1999)
Lindstorm, G., et al., Nucl. Instrum. Methods A 466, 308 (2001) CrossRef
Ziock, H.J., et al., Nucl. Instrum. Methods A 342, 96 (1994) CrossRef
S.M. Sze, Physics of Semiconductor Devices (John Wiley and Sons, New York, 1981)
RD 48 Status Report, CERN/LHCC 97-39, June (1997) and references therein
RD 48 Status Report, CERN/LHCC 98-39, Oct. (1998) and references therein
RD48/ROSE Collaboration home page http://cern.ch/RD48/
M. Moll, Ph.D. thesis, University Hamburg, 1999
Moll, M., et al., Nucl. Instrum. Methods A 439, 282 (2000) CrossRef
Moll, M., et al., Nucl. Instrum. Methods B 186, 100 (2002) CrossRef
Lindstorm, G., et al., Nucl. Instrum. Methods A 465, 60 (2001) CrossRef
Ruzin, A., et al., Nucl. Instrum. Methods A 426, 94 (1999) CrossRef
Ruzin, A., et al., Nucl. Instrum. Methods A 447, 116 (2000) CrossRef
Ruzin, A., et al., Nucl. Phys. B (Proc. Suppl.) 78, 645 (1999) CrossRef
Ruzin, A., et al., IEEE Trans. Nucl. Sci. 46, 1310 (1999) CrossRef
C. Da Via, S.J. Watts, ROSE/TN 2001-03 (2001)
Li, Z., et al., Nucl. Instrum. Methods A 461, 126 (2001) CrossRef
S. Albergo, et al., IL Nuovo Cim. 112A, 1271 (1999)
Bloch, P., et al., IEEE Trans. Nucl. Sci. 47, 47 (2000)
A. Vasilescu, Rose/TN/97-1 (1997)
Davies, G., et al., Semicond. Sci. Technol. 2, 524 (1987) CrossRef
G. Casse, Ph.D. thesis, Université J. Fourier, Grenoble, 1998
E.H.M. Heijne, CERN Report 83-06 (1983)
R. Wunstorf, Ph.D. thesis, University Hamburg, 1992, see also DESY PHIK-92-01
Gill, K., et al., Nucl. Instrum. Methods A 322, 177 (1992)
Chilingarov, A., et al., Nucl. Instrum. Methods A 360, 432 (1995) CrossRef
Ziock, H.J., et al., IEEE Trans. Nucl. Sci. 38, 269 (1991); R. Wunstorf, et al., Nucl. Phys. B 32A, 324 (1991) CrossRef
S. Sotthibandhu, Ph.D. thesis, Imperial College, London, Rutherford Appleton Laboratory, 1994 RALT-025 and references therein
Pitzl, D., et al., Nucl. Instrum. Methods A 311, 98 (1992)
Wunstorf, R., et al., Nucl. Instrum. Methods A 315, 149 (1992)
Fretwurst, E., et al., Nucl. Instrum. Methods A 342, 119 (1994) CrossRef
MacEvoy, B.C., et al., Nucl. Instrum. Methods A 374, 12 (1996) CrossRef
B.C. MacEvoy, Ph.D. thesis, Imperial College, London, 1996.
A. Peisert, N. Zamiatin, CMS NOTE 2000-016 (2000)
A. Peisert, PreShower Silicon PRR meeting CERN, Geneva (July 2001)
Richter, R.H., et al., Nucl. Instrum. Methods A 377, 412 (1996) CrossRef
Li, Z., et al., Nucl. Instrum. Methods A 409, 180 (1998) CrossRef
Bates, S.J., et al., Nucl. Instrum. Methods A 344, 228 (1994) CrossRef
Bloch P CMS-IN 2000/047 (2000)
Kraner, H.W., Nucl. Instrum. Methods 225, 615 (1984) CrossRef
D. Bisello, et al., IL Nuovo Cim. 109A, 1996 (1996)
Beck, G.A., et al., Nucl. Instrum. Methods A 396, 214 (1997) CrossRef
Wyllie, K.H., Nucl. Instrum. Methods A 409, 271 (1998) CrossRef
Da Rold, M., et al., IEEE Trans. Nucl. Sci. 46, 1215 (1999) CrossRef
Van Lint, V.A.J., Nucl. Instrum. Methods A 253, 453 (1987) CrossRef
Li, Z., et al., J. Elect. Mater. 21, 701 (1992) CrossRef
Leroy, C., et al., Nucl. Instrum. Methods A 426, 99 (1999) CrossRef
A. Bhardwaj, et al., CMS-NOTE 2001/015 (2001)
Ranjan, K., Bhardwaj, A., et al., Semicond. Sci. Technol. 17, 635 (2001)
K. Ranjan, A. Bhardwaj, et al., CMS-NOTE 2002/014 (2002)
TMA, MEDICI V. 2000.4, Users manual, February 2000