Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-15T21:10:29.314Z Has data issue: false hasContentIssue false

Arc behavior in low-voltage arc chambers

Published online by Cambridge University Press:  26 January 2010

A. Mutzke*
Affiliation:
Technische Universität Braunschweig, Institute for High-Voltage Technology and Power Systems, Schleinitzstr. 23, 38106 Braunschweig, Germany
T. Rüther
Affiliation:
Technische Universität Braunschweig, Institute for High-Voltage Technology and Power Systems, Schleinitzstr. 23, 38106 Braunschweig, Germany
M. Lindmayer
Affiliation:
Technische Universität Braunschweig, Institute for High-Voltage Technology and Power Systems, Schleinitzstr. 23, 38106 Braunschweig, Germany
M. Kurrat
Affiliation:
Technische Universität Braunschweig, Institute for High-Voltage Technology and Power Systems, Schleinitzstr. 23, 38106 Braunschweig, Germany
Get access

Abstract

The arc behavior in an arrangement of parallel arc rails with a splitter plate in between has been investigated experimentally and in numerical computations. Thereby, the arc is simulated by coupling finite-volume modeling for the gasdynamics and finite-elements modeling for the electromagnetics. The formation of arc roots on the splitter plate can be described by a thin layer of elements with a current-density dependent specific resistance. The simulations were extended to model the experimental arrangement exactly. Additionally, net emission coefficients and radiation heat conductivity of air plasma instead of a simplified T4 net emission of a black body were used to model the radiative cooling of the arc. The results of the arc voltage, the arc movement and the splitting process have been compared to measurements and high speed movies of the arc and yield good correlation. Moreover, the simulations allow good insight into the temperature distribution of the arc and the movement of the pressure waves caused at the arc ignition.


Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Schaltgeräte, edited by M. Lindmayer (Springer-Verlag, Berlin, 1987)
T. Rüther, Thesis TU Braunschweig, Göttingen, 2008
F. Karetta, M. Lindmayer, IEEE Trans. CPMT-21 Part A, 96 (1998)
F. Karetta, Thesis TU Braunschweig, Fortschritt-Bericht VDI Reihe 21, no. 250, Düsseldorf, 1998
M. Lindmayer, A. Mutzke, T. Rüther, M. Springstubbe, Some aspects of Arc Behavior in Low-Voltage Arc Chutes, in XVIth Symp. on Physics of Switching Arc, Brno, Czech Republic, 2005, Vol. 2, pp. 278–292
Lindmayer, M., Marzahn, E., Mutzke, A., Rüther, T., Springstubbe, M., IEEE Trans. CPMT 29, 310 (2006)
A. Mutzke, T. Rüther, M. Kurrat, M. Lindmayer, E.-D. Wilkening, Modeling the Arc Splitting Process in Low-Voltage Arc Chutes, in 53rd IEEE Holm Conf. on Electrical Contacts, Pittsburgh, 2007, pp. 175-182
Baudoin, F., Gonzalez, J.-J., Checchin, P., J. Phys. D: Appl. Phys. 38, 3778 (2005) CrossRef
C. Rümpler, F. Reichert, H. Stammberger, P. Terhoeven, F. Berger, Simulation und Verifikation des Lichtbogenlaufverhaltens in Löschkammerkonstruktionen, VDE-Fachbericht 63: 19, Albert-Keil-Kontaktseminar Kontaktverhalten und Schalten (VDE-Verlag, Berlin, 2007), pp. 121–130
A. Hauser, Simulation der Lichtbogenbewegung in schalterähnlicher Geometrie, VDE-Fachbericht 63: 19, Albert-Keil-Kontaktseminar Kontaktverhalten und Schalten (VDE-Verlag, Berlin, 2007), pp. 231–234
Murphy, A.B., Chem. Plasma Process. 15, 279 (1995) CrossRef
A. Erk, M. Schmelzle, Grundlagen der Schaltgerätetechnik (Springer-Verlag, Berlin, 1974)
V. Aubrecht, M. Bartlova, O. Coufal, Radiation Transfer in Air Thermal Plasmas, in XVI Int. Conf. on Gas Discharges and their Applications, Xi'an, China, 2006, Vol. 1, pp. 45–48
S.V. Dresvin, A.V. Donskoi, V.M. Goldfarb, V.S. Klubnikin, Physics and Technology of Low-Temperature Plasmas (Iowa State University Press, Ames, USA, 1977)
Flesch, P., Neiger, M., J. Phys. D: Appl. Phys. 36, 849 (2003) CrossRef
D. Herrmann, Transport Properties of High-Temperature Air, in 13th Int. Conf. on Phenomena in Ionized Gases, Berlin, 1977, pp. 495–496
Yokomizu, Y., Matsumura, T., Henmi, R., Kito, Y., J. Phys. D: Appl. Phys. 29, 1260 (1996) CrossRef
C. Fiévet, O. Bouvy, F. Gentils, C. Fleurier, Global Arc Spectroscopy in a Low Voltage Circuit Breaker, in XIII Int. Conf. on Gas Discharges and their Applications, Glasgow, Great Britain, 2000, Vol. 1, pp. 154–157
P. Freton, J.J. Gonzalez, P. Teulet, A. Gleizes, Discussions on Differences between Theoretical and Experimental Temperatures Determination in LV Circuit Breaker, in XVIIth Symp. on Physics of Switching Arc, Brno, Czech Republic, 2007, Vol. 1, pp. 69–72
E. Gassmann, Über die Bildung von Lichtbogenfußpunkten bei der Berührung leitender Teile mit dem Bogenplasma, in XII Internationales Wissenschaftliches Kolloquium TH, Vortragsreihe “Elektrische Apparate und Anlagen”, Ilmenau, 1968
A. Mutzke, thesis, TU Braunschweig, München, 2009