Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-pp5r9 Total loading time: 0.289 Render date: 2021-06-22T10:51:41.417Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Towards the optimization of materials and processes for flexible organic electronics devices

Published online by Cambridge University Press:  27 March 2009

S. Logothetidis
Affiliation:
Laboratory for Thin Films, Nanosystems & Nanometrology (LTFN), Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
A. Laskarakis
Affiliation:
Laboratory for Thin Films, Nanosystems & Nanometrology (LTFN), Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Corresponding
E-mail address:
Get access

Abstract

It is well known that the implementation of flexible organic electronic devices (FEDs) in our everyday life improve and revolutionize several aspects of our behavior. Although there has been considerable progress in the area of flexible inorganic devices (based on Si), there are numerous advances in the organic (semiconducting, conducting and insulating), inorganic and hybrid (organic-inorganic) materials that exhibit customized properties and stability, and in the synthesis and preparation methods, which are characterized by a significant amount of multidisciplinary efforts. The understanding of the organic material properties can lead to the fast progress of the functionality and performance of flexible organic electronic devices. An crucial ingredient for this is the strong interdisciplinary nature of the area of organic electronics, which brings together experts in chemistry, physics, and engineering, removing the traditional boundaries between the individual disciplines. Therefore, the understanding of the properties of organic insulators, semiconductors, and conductors as well as the effect of their synthesis process, microstructure and morphology is the goal of the current research efforts. In this work, we summarize on the latest advances in the fields of organic (semi-) conducting materials and hybrid barrier layers to be used as active layers and for the encapsulation of the materials components for the production of FEDs (such as flexible organic light-emitting diodes, and organic solar cells).

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below.

References

Berggren, M., Nilsson, D., Robinson, N.D., Nat. Mater. 6, 3 (2007) CrossRef
Smith, W.F., Nat. Nanotechnol. 2, 77 (2007) CrossRef
Gundlach, D.J., Nat. Mater. 6, 173 (2007) CrossRef
Klauk, H., Nat. Mater. 6, 397 (2007) CrossRef
Nakada, H., J. Photopolym. Sci. Technol. 20, 35 (2007) CrossRef
S. Logothetidis, Mater. Sci. Eng. B (2008), doi:10.1016/ j.mseb.2008.06.009
Sirringhaus, H., Tessler, N., Friend, R.H., Science 280, 1741 (1998) CrossRef
Baibarac, M., Gomez-Romero, P., J. Nanosci. Nanotechnol. 6, 289 (2006) CrossRef
Moliton, A., Nunzi, J.-M., Polym. Int. 55, 583 (2006) CrossRef
S. Logothetidis, Proc. SPIE, International Offshore and Polar Engineering Conference (2007), p. 6732
Yanaka, M., Henry, B.M., Roberts, A.P., Grovenor, C.R.M., Briggs, G.A.D., Sutton, A.P., Miyamoto, T., Tsukahara, Y., Takeda, N., Chater, R.J., Thin Solid Films 397, 176 (2001) CrossRef
Laskarakis, A., Logothetidis, S., J. Appl. Phys. 99, 66101 (2006) CrossRef
Logothetidis, S., Rev. Adv. Mater. Sci. 10, 387 (2005)
Haas, K.-H., Amberg-Schwab, S., Rose, K., Schottner, G., Surf. Coat. Technol. 111, 72 (1999) CrossRef
Koch, N., Chem. Phys. Chem. 8, 1438 (2007) CrossRef
Zhang, F., Perzon, E., Wang, X., Mammo, W., Andersson, M.R., Inganas, O., Adv. Funct. Mater. 15, 745 (2005) CrossRef
Gavrila, G.N., Mendez, H., Kampen, T.U., Zahn, D.R.T., Vyalikh, D.V., Braun, W., Appl. Phys. Lett. 85, 4657 (2004) CrossRef
Hasegawa, S., Mori, T., Imaeda, K., Tanaka, S., Yamashita, Y., Inokuchi, H., Fujimoto, H., Seki, K., Ueno, N., J. Chem. Phys. 100, 6969 (1994) CrossRef
Koch, N., Vollmer, A., Salzmann, I., Nickel, B., Weiss, H., Rabe, J.P., Phys. Rev. Lett. 96, 156803 (2006) CrossRef
Baldo, M.A., O'Brien, D.F., Thompson, M.E., Forrest, S.R., Phys. Rev. B 60, 14422 (1999) CrossRef
Heggie, D.A., MacDonald, B.L., Hill, I.G., J. Appl. Phys. 100, 104505 (2006) CrossRef
Tang, C.W., Appl. Phys. Lett. 48, 183 (1986) CrossRef
Hur, S.W., Kim, S.K., Kim, T.W., Park, J.W., Cryst. Liq. Cryst. 424, 225 (2004)
Pettersson, L.A.A., Johansson, T., Carlsson, F., Arwin, H., Inganas, O., Synth. Met. 101, 198 (1999) CrossRef
Schubert, M., Bundesmann, C., Wenckstern, H., Appl. Phys. Lett. 84, 1311 (2004) CrossRef
Al-Attara, H.A., Al-Alawina, Q.H., Monkman, A.P., Thin Solid Films 429, 286 (2003) CrossRef
Bormashenko, E., Pogreb, R., Sutovski, S., Shulzinger, A., Sheshnev, A., Izakson, G., Katzir, A., Synth. Met. 140, 49 (2004) CrossRef
Piro, B., Dang, L.A., Pham, M.C., Fabiano, S., Tran-Minh, C., J. Electroanal. Chem. 101, 101 (2001) CrossRef
Bianchi, R.F., Balogn, D.T., Tinari, M., Faria, R.M., Irene, E.A., J. Polym. Sci. B Polym. Phys. 42, 1033 (2004) CrossRef
Kumar, S., Biswas, A.K., Shukla, V.K., Awasthi, A., An, R.S., Narain, J., Synth. Met. 139, 751 (2003) CrossRef
Lian, J., Yuan, Y., Cao, L., Zhang, J., Pang, H., Zhou, Y., Zhou, X., J. Lumin. 122-123, 660 (2007) CrossRef
Kumar, S., Shukla, V.K., Tripathi, A., Thin Solid Films 477, 240 (2005) CrossRef
Sariciftci, N.S., Mater. Today 7, 36 (2004) CrossRef
Erb, T., Zhokhavets, U., Hoppe, H., Gobsch, G., Al-Ibrahim, M., Ambacher, O., Thin Solid Films 511-512, 483 (2006) CrossRef
Brown, P.J., Thomas, D.S., Kohler, A., Wilson, J.S., Kim, J.-S., Ramsdale, C.M., Sirringhaus, H., Friend, R., Phys. Rev. B 67, 064203 (2003) CrossRef
S. Logothetidis (2009) (submitted)
Gordan, O.D., Friedrich, M., Zahn, D.R.T., Org. Electron. 5, 291 (2004) CrossRef
Logothetidis, S., Laskarakis, A., Kassavetis, S., Lousinian, S., Gravalidis, C., Kiriakidis, G., Thin Solid Films 516, 1345 (2008) CrossRef
Kirchmeyer, S., Reuter, K., J. Mater. Chem. 15, 2077 (2005) CrossRef
S. Logothetidis, A. Laskarakis, Thin Solid Films (2009) (in press)
Hosono, H., Ohta, H., Orita, M., Ueda, K., Hirano, M., Vacuum 66, 419 (2002) CrossRef
Fortunato, E., Barquinha, P., Pimentel, A., Goncalves, A., Marques, A., Pereira, L., Martins, R., Thin Solid Films 487, 205 (2005) CrossRef
Suchea, M., Christoulakis, S., Moschovis, K., Katsarakis, N., Kiriakidis, G., Rev. Adv. Mater. Sci. 10, 335 (2005)
Jellison, G.E., Modine, F.A., Appl. Phys. Lett. 69, 371 (1996) CrossRef
Thomas, D.G., J. Phys. Chem. Sol. 15, 86 (1959) CrossRef
Amberg-Schwab, S., Weber, U., Burger, A., Nique, S., Xalter, R., Monatshefte für Chemie 137, 657 (2006) CrossRef
H.-C. Langowski, Soc. Vac. Coat., San Francisco, USA (2003), p. 559
A. Laskarakis, D. Georgiou, S. Logothetidis, S. Amberg-Scwhab, U. Weber, Mater. Chem. Phys. (2009) (in press)
Moro, L., Rutherford, N.M., Visser, R.J., Hauch, J.A., Klepek, C., Denk, P., Schilinsky, P., Brabec, C.J., Proc. SPIE 6334, 63340M (2006) CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Towards the optimization of materials and processes for flexible organic electronics devices
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Towards the optimization of materials and processes for flexible organic electronics devices
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Towards the optimization of materials and processes for flexible organic electronics devices
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *