Hostname: page-component-cc8bf7c57-n7pht Total loading time: 0 Render date: 2024-12-11T03:02:55.508Z Has data issue: false hasContentIssue false

Synthesis cathode material LiNi0.80Co0.15Al0.05O2 with two step solid-state method under air stream

Published online by Cambridge University Press:  06 January 2014

Shubiao Xia*
Affiliation:
Faculty of Chemistry & Chemical Engineering, Qujing Normal University, Qujing 655011, P.R. China Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P.R. China
Yingjie Zhang
Affiliation:
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P.R. China
Peng Dong
Affiliation:
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P.R. China
Yannan Zhang
Affiliation:
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P.R. China
Get access

Abstract

A facile generic strategy of solid-state reaction under air atmosphere is employed to prepare LiNi0.8Co0.15Al0.05O2 layer structure micro-sphere as cathodes for Li-ion batteries. The impurity phase has been eliminated wholly without changing the R-3m space group of LiNi0.8Co0.15Al0.05O2. The electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathodes depend on the sintering step, temperature, particle size and uniformity. The sample pre-sintered at 540 °C for 12 h and then sintered at 720 °C for 28 h exhibits the best electrochemical performance, which delivers a reversible capacity of 180.4, 165.8, 154.7 and 135.6 mAhg−1 at 0.2 C, 1 C, 2 C and 5 C, respectively. The capacity retention keeps over 87% after 76 cycles at 1 C. This method is simple, cheap and mass-productive, and thus suitable to large scale production of NCA cathodes directly used for lithium ion batteries.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chen, C.H., Liu, J., Stoll, M.E., J. Power Sources 128, 278 (2004)CrossRef
Majumder, S.B., Nieto, S., Katiyar, R.S., J. Power Sources 154, 262 (2006)CrossRef
Lee, S.H., Yoon, C.S., Amine, K., Sun, Y.K., J. Power Sources 234, 201 (2013)CrossRef
Sivaprakash, S., Majumder, S.B., Nieto, S., Katiyar, R.S., J. Power Sources 170, 433 (2007)CrossRef
Kalyani, P., Kalaiselvi, N., Sci. Technol. Adv. Mater. 6, 689 (2005)CrossRef
Ohzuku, T., Ueda, A., Nagayama, M., Electrochim. Acta 38, 1159 (1993)CrossRef
Delmas, C., Menertrier, M., Croguennec, L., Electrochim. Acta 45, 243 (1999)CrossRef
Du, K., Wu, B., Hu, G.R., Peng, Z.D., Battery Bimonthly 41, 264 (2011)
Ramesh Babu, B. et al., Int. J. Inorg. Mater. 3, 401 (2001)CrossRef
Zhu, X.J., Zhan, H., Zhou, Y.H., Rare Metals 25, 303 (2006)CrossRef
Nam, K.W., Yoon, W., Yang, X.Q., J. Power Sources 189, 515 (2009)CrossRef
Reddy, M.V., Subba Rao, G.V., Chowdari, B.V.R., J. Phys. Chem. 111, 11712 (2007)CrossRef
Hyun, J.B. et al., J. Electrochem. Soc. 153, A731 (2006)
Wang, Z.G., Wei, X.L., Yang, L., China J. Power Sources 34, 1130 (2010)
Yoon, W.S. et al., J. Power Sources 217, 128 (2012)CrossRef
Ariyoshi, K., Ichikawa, T., Ohzuku, T., J. Phys. Chem. Solids 69, 1238 (2008)CrossRef
Zhu, X.J., Liu, H.X., Gan, X.Y., J. Electroceram. 17, 645 (2006)CrossRef
Ju, S.H. et al., J. Alloys Compd. 450, 457 (2008)CrossRef
Belharouak, I., Lu, W.Q., Vissers, D., Electrochem. Commun. 8, 329 (2006)CrossRef
Tran, H.Y., Greco, G., Taubert, C., J. Power Sources 210, 276 (2012)CrossRef
Abraham, D.P., Kawauchi, S., Dees, D.W., Electrochim. Acta 53, 2121 (2008)CrossRef
Shi, S.J., Tu, J.P., Tang, Y.Y., Liu, X.Y., Zhao, X.Y., Wang, X.L., Ge, C.D., J. Power Sources 241, 186 (2013)CrossRef
Bloom, I. et al., J. Power Sources 124, 538 (2003)CrossRef