Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-l2zqg Total loading time: 0.238 Render date: 2021-09-20T12:54:25.035Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Raman spectroscopy of nano-structured silicon to study the embedded crystallites

Published online by Cambridge University Press:  12 July 2007

V. Tripathi*
Affiliation:
Samtel Center for Display Technologies, Indian Institute of Technology 208016 Kanpur, India
M. Nazrul Islam
Affiliation:
Dept. of Physics, Indian Institute of Technology, Kanpur-208016, UP, India
Y. N. Mohapatra
Affiliation:
Dept. of Physics, Indian Institute of Technology, Kanpur-208016, UP, India
P. Roca i Cabarrocas
Affiliation:
LPICM, Ecole Polytechnique, 91128 Palaiseau Cedex, France
*Corresponding
Get access

Abstract

Raman spectra of a variety of polymorphous (pm-Si:H) and amorphous silicon (a-Si:H) samples deposited by plasma enhanced chemical vapor deposition (PECVD) at different pressures were recorded in the range of 150 cm-1 to 750 cm-1 using a 514 nm excitation source. A comparison of Raman spectra between a-Si:H and pm-Si:H samples reveals significant differences. The Transverse Optical (TO) peak in case of pm-Si:H is asymmetric and shifted to higher wave numbers. In the literature, discrepancies between predictions of various quantum confinement models and experimental spectra have typically been attributed to either strain or negligible fraction of nanocrystallites. We show that a quantum confinement model along with a Gaussian size distribution is able to accurately predict particle size of nanocrystallites embedded in the amorphous matrix. The crystallite size and size distribution obtained by fitting the TO peak is consistent with high-resolution transmission electron microscopy observations. In our case typical mean crystallite size obtained is about 3 nm with FWHM of the distribution varying in the range 0.2–1 nm. A comparison of ratio of heights in TA and TO peaks of a-Si:H and pm-Si:H material indicates that pm-Si:H as a material has higher medium range order (MRO). This ratio has been used to compare the degree of MRO in pm-Si:H samples prepared under different conditions. Thus, we demonstrate that Raman Spectroscopy along with our model can be used to obtain the crystallite size distribution and provide a measure of degree of medium range order.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kharchenko, A.V., Suendo, V., Roca, P. i Cabarrocas, Thin Solid Films 427, 236 (2003) CrossRef
Meaudre, M., Meaudre, R., Butté, R., Vignoli, S., Longeaud, C., Kleider, J.P., Roca, P. i. Cabarrocas, J. Appl. Phys. 86, 946 (1999) CrossRef
Voz, C., Puigdollers, J., Orpella, A., Alcubilla, R., Fontecuberta, A. i. Morral, V. Tripathi, P. Roca i. Cabarrocas, J. Non-Cryst. Solids 299, 1345 (2002) CrossRef
Fontcuberta, A. i Morral, R. Brenot, E.A.G. Hamers, R. Vanderhaghen, P. Roca i Cabarrocas, J. Non-Cryst. Solids 266, 48 (2000) CrossRef
A. Fontcuberta i Morral, P. Roca i Cabarrocas, C. Clerc, Phys. Rev. B 69 125307 (2004)
Vignoli, S, Butté, R, Meaudre, R, Meaudre, M, Roca, P i Cabarrocas, J. Phys.:Condens. Matter 11, 8749 (1999)
Rodrigues, P.A.M., Cerdeira, H.A., Cerdeira, F., Int. J. Mod. Phys. B 3, 1167 (1989) CrossRef
Campbell, I.H., Fauchet, P.M., Solid State Commun. 58, 739 (1986) CrossRef
Vink, R.L.C., Barkema, G.T., van der Weg, W.F., Phys. Rev. B 63, 115210 (2001) CrossRef
Tsu, D.V., Chao, B.S., Ovshinsky, S.R., Jones, S.J., Yang, J., Guha, S., Tsu, R., Phys. Rev. B 63, 125338 (2001) CrossRef
Viera, G., Huet, S., Boufendi, L., J. Appl. Phys. 90, 4175 (2001) CrossRef
Kwon, Daewon, Lee, Hao, Cohen, J. David, Jin, Hyun-Chul, Abelson, J.R., J. Non-Cryst. Solids 227, 1040 (1998) CrossRef
Meaudre, R., Butté, R., Vignoli, S., Meaudre, M., Saviot, L., Marty, O., Roca, P. i Cabarrocas, Eur. Phys. J. Appl. Phys. 22, 171 (2003) CrossRef
Md. N. Islam, Satyendra Kumar, Appl. Phys. Lett. 78, 715, (2001)
Roca, P. i Cabarrocas, J.B. Chévrier, J.Huc, A. Lloret, J.Y. Parey, J.P.M Schmitt, J. Vac. Sci. Technol. A 9, 2331 (1991) CrossRef
Tatiana Globus, Gautam Ganguly, Pere Roca, i Cabarrocas, J. Appl. Phys. 88, 1907 (2000)
Zachariasen, W.H., J. Am. Chem. Soc. 51, 3841 (1932) CrossRef
Beeman, D., Tsu, R., Thorpe, M.F., Phys. Rev. B 32, 874 (1985) CrossRef
Marinov, M., Zotov, N., Phys. Rev. B 55, 2938 (1997) CrossRef
Voyles, P.M., Zotov, N., Nakhmanson, S.M., Drabold, D.A., Gibson, J.M., Treacy, M.M.J., Keblinski, P., J. Appl. Phys. 90, 4438 (2001) CrossRef
Viera, G., Huet, S., Bertran, E., Boufendi, L., J. Appl. Phys. 90, 4272 (2001) CrossRef
Zi, J., Büscher, H., Falter, C., Ludwig, W., Zhang, K., Xie Xide, Appl. Phys. Lett. 69, 200 (1996) CrossRef
H. Richter, Z.P. Wang, L. Ley, Solid State Commun. 39, 625 (1981)
C. Meyer et al., Physica E, in press
Zhao, Z.X. et al., Sol. Energy Mater. Sol. Cells 86, 135 (2005) CrossRef
Terukov, E.I., Kudoyarova, V. Kh., Davydov, V. Yu., Koughia, K.V., Weiser, G., Mell, H., Mater. Sci. Engineer. B 69, 266 (2000) CrossRef
Wu, X.L., Yuan, X.Y., Tong, S., Liu, X.N., Bao, X.M., Jiang, S.S., Zhang, X.K., Feng, D., Solid State Commun. 104, 355 (1997) CrossRef
Islam, M.N., Panda, R.N., Pradhan, A., Kumar, S., Phys. Rev. B 65, 033314 (2002) CrossRef
Tubino, R., Piseri, L., Zerbi, G., J. Chem. Phys. 56, 1022 (1972) CrossRef
M.N. Islam, Ph.D. Thesis, IIT Kanpur (2002)
Roca, P. i Cabarrocas, A. Fontcuberta i Morral, Y. Poissant, Thin Solid Films 403, 39 (2002) CrossRef
Kshirsagar, S.T., Lannin, J.S., Phys. Rev. B 25, 2916 (1982) CrossRef
Smit, C., van Swaaij, R.A.C.M.M., Donker, H., Petit, A.M.H.N., Kessels, W.M.M., van de Sanden, M.C.M., J. Appl. Phys. 94, 3582 (2003) CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Raman spectroscopy of nano-structured silicon to study the embedded crystallites
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Raman spectroscopy of nano-structured silicon to study the embedded crystallites
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Raman spectroscopy of nano-structured silicon to study the embedded crystallites
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *