Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-ftpnm Total loading time: 0.227 Render date: 2021-09-17T19:38:38.647Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Numerical damage models using a structural approach: application in bones and ligaments

Published online by Cambridge University Press:  15 January 2002

P. J. Arnoux
Affiliation:
Laboratoire de Mécanique et d'Acoustique, CNRS, équipe MMCB, 31 chemin J. Aiguier, 13402 Marseille, France Laboratoire de Biomécanique Appliquée, INRETS, Faculté de Médecine, boulevard P. Dramard, 13916 Marseille, France
J. Bonnoit
Affiliation:
Laboratoire de Biomécanique Appliquée, INRETS, Faculté de Médecine, boulevard P. Dramard, 13916 Marseille, France
P. Chabrand
Affiliation:
Laboratoire de Mécanique et d'Acoustique, CNRS, équipe MMCB, 31 chemin J. Aiguier, 13402 Marseille, France
M. Jean
Affiliation:
Laboratoire de Mécanique et d'Acoustique, CNRS, équipe MMCB, 31 chemin J. Aiguier, 13402 Marseille, France
M. Pithioux*
Affiliation:
Laboratoire de Mécanique et d'Acoustique, CNRS, équipe MMCB, 31 chemin J. Aiguier, 13402 Marseille, France
*Corresponding
Get access

Abstract

The purpose of the present study was to apply knowledge of structural properties to perform numerical simulations with models of bones and knee ligaments exposed to dynamic tensile loading leading to tissue damage. Compact bones and knee ligaments exhibit the same geometrical pattern in their different levels of structural hierarchy from the tropocollagen molecule to the fibre. Nevertheless, their mechanical behaviours differ considerably at the fibril level. These differences are due to the contribution of the joints in the microfibril-fibril-fibre assembly and to the mechanical properties of the structural components. Two finite element models of the fibrous bone and ligament structure were used to describe damage in terms of elastoplastic laws or joint decohesion processes.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M. Jean, Frictional contact in rigid or deformable bodies: numerical simulation of geomaterials, edited by A.P.S. Salvaduai, J.M. Boulon (Elsevier Science Publisher, Amsterdam), pp. 463-486.
Jean, M., Comput. Methods Appl. Mech. Eng. 177, 235 (1999). CrossRef
Crolet, J.M., Aoubiza, B., Meunier, A., J. Biomech. 26, 677 (1993). CrossRef
Bingham, D.N., DeHoff, P.H., J. Biomech. Eng. 101, 15 (1979). CrossRef
Carter, D.R., Caler, W.E., J. Orthopead. Res. 3, 84 (1985). CrossRef
Bonfield, W., Li, C.H., J. Appl. Phys. 37, 869 (1966). CrossRef
Cooke, F.W., Zeidman, H., Scheifele, S.J., J. Biomed. Mater. Res. Symp. 4, 383 (1973). CrossRef
A. Viidik, Functional properties of collagenous tissues. International Review of Connective Tissue Research, VI (Academic press, New York, 1973).
A. Viidik, Mechanical properties of parallel-fibred collagenous tissues, Biology of collagen (London: Academic press, 1980), pp. 237-255.
J.C. Barbenel, J.H. Evans, J.B. Finlay, Stress-strain time relation for soft connective tissues. Perspectives in Biomedical Engineering, edited by R.M. Kenedi (London Macmillan, 1973).
Sanjeevi, R., Somanathan, N., Ramaswamy, D., J. Biomech. 15, 181 (1982). CrossRef
Y.C. Fung, Biomechanics. Mechanical properties of living tissues (Springer-Verlag, 1993).
Piekarski, K., J. Appl. Phys. 41, 215 (1970). CrossRef
Piekarski, K., Int. J. Eng. Sci. 11, 557 (1973). CrossRef
Decreamer, W., Maes, M., Vanhuyse, V., Vanpeper-Strate, P., J. Biomech. 13, 550 (1980).
Sasaki, N., Odajima, S., J. Biomech. 29, 655 (1996). CrossRef
Sasaki, N., Odajima, S., J. Biomech. 29, 1131 (1996). CrossRef
Kwan, M., Woo, S., J. Biomech. Eng. 111, 361 (1989). CrossRef
Evans, F.G., Bang, S., Am. J. Anat. 120, 79 (1967). CrossRef
Kastelic, J., Galeski, A., Bear, E., Connect. Tissue Res. 6, 11 (1978). CrossRef
Weiner, S., Traub, W., The Federation of American Societies for Experimental Biology Journal 6, 879 (1992).
E. Bonucci, P.M. Motta, Collagen mineralization: Aspects of structural relationship between collagen and the apatic crystallites, in Ultrastructure of Skeletal Tissues (Kluwer Academic Publisher, 1990), pp. 41-62.
Mosler, E., Folkhard, W., Knorzer, E., J. Mol. Biol. 182, 589 (1985). CrossRef
Folkhard, W., Mosler, E., Geercken, W., Knorzer, E., Nemetscheck-Gansler, H., Nemetscheck, Th., Koch, H.J., Int. J. Biol. Macromol. 9, 169 (1987). CrossRef
Comminou, M., Yannas, I., J. Biomech. 9, 427 (1976). CrossRef
Maes, M., Vanhuyse, V., Decraemer, W., Raman, E., J. Biomech. 22, 1203 (1989). CrossRef
Gottesman, T., Hashin, Z., J. Biomech. 13, 89 (1980). CrossRef
A. Hodge, J. Petruska, Electron microscopy (Academic Press, New York, 1962).
Katz, J.L., Ukraincik, K., J. Biomech. 4, 221 (1971). CrossRef
J.L. Katz, The structure and biomechanics of bone. Mechanical Properties of Biological Materials' (Cambridge University Press, Cambridge, 1979), Vol. 34, pp. 137-168.
Lanir, Y., J. Biomech. 16, 1 (1983). CrossRef
Humphrey, J., Yin, F., J. Biophys. 52, 563 (1987). CrossRef
Currey, J.D., Clin. Orthopead. Related Res. J. 73, 210 (1970).
Gilmore, R.S., Katz, J.L., J. Mater. Sci. 17, 1131 (1982). CrossRef
Ascenzi, A., Bonucci, E., Anat. Record J. 158, 375 (1967). CrossRef
Reilly, D.T., Burstein, A.H., J. Biomech. 8, 393 (1975). CrossRef
M. Pithioux, Lois de comportement et modèles de rupture des os longs, University Aix Marseille II, thesis 2000.
Liao, H., Belkoff, S.A., J. Biomech. 32, 183 (1999). CrossRef
Hurschler, C., Loitz-Ramage, B., Vanderby, R., J. Biomech. Eng. 119, 392 (1997). CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Numerical damage models using a structural approach: application in bones and ligaments
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Numerical damage models using a structural approach: application in bones and ligaments
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Numerical damage models using a structural approach: application in bones and ligaments
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *