Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T04:52:31.833Z Has data issue: false hasContentIssue false

Nonvolatile flip-flop based on pseudo-spin-transistor architecture and its nonvolatile power-gating applications for low-power CMOS logic*

Published online by Cambridge University Press:  05 July 2013

Shuu’ichirou Yamamoto*
Affiliation:
Department of Information Processing, Tokyo Institute of Technology, Yokohama 226-8502, Japan CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
Yusuke Shuto
Affiliation:
CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, Yokohama 226-8502, Japan
Satoshi Sugahara
Affiliation:
CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, Yokohama 226-8502, Japan
Get access

Abstract

We computationally analyzed performance and power-gating (PG) ability of a new nonvolatile delay flip-flop (NV-DFF) based on pseudo-spin-MOSFET (PS-MOSFET) architecture using spin-transfer-torque magnetic tunnel junctions (STT-MTJs). The high-performance energy-efficient PG operations of the NV-DFF can be achieved owing to its cell structure employing PS-MOSFETs that can electrically separate the STT-MTJs from the ordinary DFF part of the NV-DFF. This separation also makes it possible that the break-even time (BET) of the NV-DFF is designed by the size of the PS-MOSFETs without performance degradation of the normal DFF operations. The effect of the area occupation ratio of the NV-DFFs to a CMOS logic system on the BET was also analyzed. Although the optimized BET was varied depending on the area occupation ratio, energy-efficient fine-grained PG with a BET of several sub-microseconds was revealed to be achieved. We also proposed microprocessors and system-on-chip (SoC) devices using nonvolatile hierarchical-memory systems wherein NV-DFF and nonvolatile static random access memory (NV-SRAM) circuits are used as fundamental building blocks.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Contribution to the Topical Issue “International Semiconductor Conference Dresden-Grenoble – ISCDG 2012”, Edited by Gérard Ghibaudo, Francis Balestra and Simon Deleonibus.

References

Kim, N.S., Austin, T., Blaauw, D., Mudge, T., Flautner, K., Hu, J.S., Irwin, M.J., Kandemir, M., Narayanan, V., IEEE Computer 36, 68 (2003)
Kanno, Y., Mizuno, H., Yasu, Y., Hirose, K., Shimazaki, Y., Hoshi, T., Miyairi, Y., Ishi, T., Yamada, T., Irita, T., Hattori, T., Yanagisawa, K., Irie, N., IEEE J. Solid-State Circuits 42, 74 (2007)CrossRef
George, V., in Symposium on High Performance Chips, Stanford, 2007, HC19.08.01
Sakran, N., Yuffe, M., Mehalel, M., Doweck, J., Knoll, E., Kovacs, A., in International Solid State Circuit Conference Digest of Technical Papers, San Francisco, 2007, p. 106
Mutoh, S., Douseki, T., Matsuya, Y., Aoki, T., Sigematsu, S., Yamada, J., IEEE J. Solid-State Circuits 30, 847 (1995)CrossRef
Yamamoto, S., Sugahara, S., Jpn J. Appl. Phys. 49, 090204 (2010)CrossRef
Yamamoto, S., Sugahara, S., Jpn J. Appl. Phys. 48, 043001 (2009)CrossRef
Shuto, Y., Yamamoto, S., Sugahara, S., J. Appl. Phys. 105, 07C933 (2009)CrossRef
Zhao, W., Chappert, C., Javerliac, V., Noziere, J.-P., IEEE Trans. Magn. 45, 3784 (2009)CrossRef
Abe, K., Nomura, K., Ikegawa, S., Kishi, T., Yoda, H., Fujita, S., in Extended Abstracts of the 2010 International Conference on Solid State Devices and Materials, Tokyo, 2010, p. 1144
Ohsawa, T., Iga, F., Ikeda, S., Hanyu, T., Ohno, H., Endoh, T., in Extended Abstracts of the 2011 International Conference on Solid State Devices and Materials, Nagoya, 2011, p. 959
Shuto, Y., Nakane, R., Wang, W., Sukegawa, H., Yamamoto, S., Tanaka, M., Inomata, K., Sugahara, S., Appl. Phys. Exp. 3, 013003 (2010)CrossRef
Hosomi, M., Yamagishi, H., Yamamoto, T., Bessho, K., Higo, Y., Yamane, K., Yamada, H., Shoji, M., Hachino, H., Fukumoto, C., Nagao, H., Kano, H., in Technical Digest of IEEE International Electron Device Meeting, Washington, 2005, p. 459
Hayakawa, J., Ikeda, S., Matsukura, F., Takahashi, H., Ohno, H., Jpn J. Appl. Phys. 44, L587 (2005)CrossRef
Ikeda, S., Miura, K., Yamamoto, H., Mizunuma, K., Gan, H.D., Endo, M., Kanai, S., Hayakawa, J., Matsukura, F., Ohno, H., Nature Mater. 9, 721 (2010)CrossRef
Yoda, H., Kishi, T., Nagase, T., Yoshikawa, M., Nishiyama, K., Kitagawa, E., Daibou, T., Amano, M., Shimomura, N., Takahashi, S., Kai, T., Nakayama, M., Aikawa, H., Ikegawa, S., Nagamine, M., Ozeki, J., Mizukami, S., Oogane, M., Ando, Y., Yuasa, S., Yakushiji, K., Kubota, H., Suzuki, Y., Nakatani, Y., Miyazaki, T., Ando, K., Curr. Appl. Phys. 10, e87 (2010)CrossRef
Worledge, D.C., Hu, G., Abraham, D.W., Sun, J.Z., Trouilloud, P.L., Nowak, J., Brown, S., Gaidis, M.C., O’Sullivan, E.J., Robertazzi, R.P., Appl. Phys. Lett. 98, 022501 (2011)CrossRef
Gajek, M., Nowak, J.J., Sun, J.Z., Trouilloud, P.L., O’Sullivan, E.J., Abraham, D.W., Gaidis, M.C., Hu, G., Brown, S., Zhu, Y., Robertazzi, R.P., Gallagher, W.J., Worledge, D.C., Appl. Phys. Lett. 100, 132408 (2012)CrossRef
Sugahara, S., IEE Proc.-Circuits Devices Syst. 152, 355 (2005)CrossRef
Device Group at UC Berkeley: Berkeley Predictive Technology Model http://ptm.asu.edu/
Usami, K., in Proceedings of Asia South Pacific Design Automation Conference, Yokohama, 2007, p. 634
Hu, Z., Buyuktosunoglu, A., Srinivasan, V., Zyuban, V., Jacobson, H., Bose, P., in Proceedings of 2004 ACM/IEEE International Symposium on Low Power Electronics and Design, Newport, 2004, p. 32
Yamamoto, S., Shuto, Y., Sugahara, S., Electron. Lett. 47, 1027 (2011)CrossRef
Brglez, F., Bryan, D., Kozminski, K., in Proceedings of International Symposium on Circuits and Systems, Portland, 1989, p. 1929
Yamamoto, S., Shuto, Y., Sugahara, S., in International Conference of Silicon Nano Devices in 2030: Prospects by World’s Leading Scientists, Tokyo, 2009, p. 50