Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-10-06T10:36:07.757Z Has data issue: false hasContentIssue false

The influence of the InGaN back-barrier on the properties of Al0.3Ga0.7N/AlN/GaN/InGaN/GaN structure

Published online by Cambridge University Press:  21 July 2011

Y. Bi*
Affiliation:
Materials Science Center, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, P.R. China
X.L. Wang
Affiliation:
Materials Science Center, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, P.R. China Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, P.R. China
H.L. Xiao
Affiliation:
Materials Science Center, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, P.R. China Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, P.R. China
C.M. Wang
Affiliation:
Materials Science Center, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, P.R. China Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, P.R. China
E.C. Peng
Affiliation:
Materials Science Center, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, P.R. China
D.F. Lin
Affiliation:
Materials Science Center, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, P.R. China
C. Feng
Affiliation:
Materials Science Center, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, P.R. China Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, P.R. China
L.J. Jiang
Affiliation:
Materials Science Center, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, P.R. China Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, P.R. China
*
a e-mail: ybi@semi.ac.cn
Get access

Abstract

This is a theoretical study of the InGaN back-barrier on the properties of the Al03Ga0.7N/AlN/GaN/InGaN/GaN HEMT structure by self-consistently solving coupled Schrödinger and Poisson equations. Our calculation shows that by increasing the indium composition, the conduction band of the GaN buffer layer is raised and the confinement of 2DEG is improved. However, the additional quantum well formed by InGaN becomes deeper, inducing and confining more electrons in it. Another conductive channel is formed which may impair the device performance. With the increasing InGaN thickness, the well depth remains the same and the conduction band of GaN buffer layer rises, enhancing the confinement of the 2DEG without inducing more electrons in the well. The 2DEG sheet density decreases slightly with the indium composition and the physical mechanism is discussed. Low indium composition and thick InGaN back-barrier layer are beneficial to mitigate the short-channel effects, especially for high-frequency devices.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Higashiwaki, M., Matsui, T., Jpn. J. Appl. Phys. 44, L475 (2005)CrossRef
Higashiwaki, M., Matsui, T., Mimura, T., IEEE Electron. Device Lett. 27, 16 (2006)CrossRef
Higashiwaki, M., Mimura, T., Matsui, T., Appl. Phys. Express 1, 021103 (2008)CrossRef
Higashiwaki, M., Mimura, T., Matsui, T., Thin Solid Films 516, 548 (2008)CrossRef
Palacios, T., Chakraborty, A., Heikman, S., Keller, S., DenBaars, S., Mishra, U., IEEE Electron. Device Lett. 27, 13 (2006)CrossRef
Tang, J., Wang, X.L., Xiao, H.L., Ran, J.X., Wang, C.M., Wang, X.Y., Hu, G.X., Li, J.M., Phys. Stat. Sol. C 5, 2982 (2008)CrossRef
Liu, J., Zhou, Y.G., Zhu, J., Lau, K.M., Chen, K.J., IEEE Electron. Device Lett. 27, 10 (2006)
Shen, L., Heikman, S., Moran, B., Coffie, R., Zhang, N.Q., Buttari, D., Smorchkova, I.P., Keller, S., DenBaars, S.P., Mishra, U.K., IEEE Electron. Device Lett. 22, 457 (2001)CrossRef
Jogai, B., J. Appl. Phys. 93, 1631 (2003)CrossRef
Bernardini, F., Fiorentini, V., Vanderbilt, D., Phys. Rev. B 56, 10024 (1997)CrossRef
Ambacher, O., Foutz, B., Smart, J., Shealy, J.R., Weimann, N.G., Chu, K., Murphy, M., Sierakowski, A.J., Schaff, W.J., Eastman, L.F., Dimitrov, R., Mitchell, A., Stutzmann, M., J. Appl. Phys. 87, 334 (2000)CrossRef
Asbeck, P.M., Yu, E.T., Lau, S.S., Sullivan, G.J., VanHove, J., Redwing, J., Electron Lett. 33, 1230 (1997)CrossRef
Guo, L.C., Wang, X.L., Xiao, H.L., Wang, B.Z., J. Cryst. Growth 298, 522 (2007)CrossRef