Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-28T17:53:19.690Z Has data issue: false hasContentIssue false

Effects of dispersion on electromagnetic parameters of tape-helix Blumlein pulse forming line of accelerator

Published online by Cambridge University Press:  23 February 2012

Y. Zhang*
College of Opto-electronic Science and Engineering, National University of Defense Technology, Changsha 410073, P.R. China
J.L. Liu
College of Opto-electronic Science and Engineering, National University of Defense Technology, Changsha 410073, P.R. China
J.H. Feng
College of Opto-electronic Science and Engineering, National University of Defense Technology, Changsha 410073, P.R. China
Get access


In this paper, the tape-helix model is firstly introduced in the field of intense electron beam accelerator to analyze the dispersion effects on the electromagnetic parameters of helical Blumlein pulse forming line (PFL). Work band and dispersion relation of the PFL are analyzed, and the normalized coefficients of spatial harmonics are calculated. Dispersion effects on the important electromagnetic parameters of PFL, such as phase velocity, slow-wave coefficient, electric length and pulse duration, are analyzed as the central topic. In the PFL, electromagnetic waves with different frequencies in the work band of PFL have almost the same phase velocity. When de-ionized water, transformer oil and air are used as the PFL filling dielectric, respectively, the pulse duration of the helical Blumlein PFL is calculated as 479.6 ns, 81.1 ns and 53.1 ns in order. Electromagnetic wave simulation and experiments are carried out to demonstrate the theoretical calculations of the electric length and pulse duration which directly describe the phase velocity and dispersion of the PFL. Simulation results prove the theoretical analysis and calculation on pulse duration. Experiment is carried out based on the tape-helix Blumlein PFL and magnetic switch system. Experimental results show that the pulse durations are tested as 460 ns, 79 ns and 49 ns in order when de-ionized water, transformer oil and air are used respectively. Experimental results basically demonstrate the theoretical calculations and the analyses of dispersion.

Research Article
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Kompfner, R., Proc. IRE 35, 124 (1947)CrossRef
Pierce, J.R., Traveling Wave Tubes (Van Nostrand, New York, 1950)Google Scholar
Johnson, H.R., Everhart, T.E., Siegman, A.E., IRE Trans. Electron Devices 2, 18 (1956)CrossRef
Friedman, S., Limpaecher, R., Sirchis, M., Compact energy storage using a modified-spiral PFL, in Power Modulator Symposium, South Carolina, USA, 1988, pp. 360366Google Scholar
Teranishi, T., Nojima, K., Motegi, S., Murase, H., Ohshima, I., A 600 kV Blumlein modulator for an X-band klystron, in The 8th IEEE International Pulsed Power Conference, San Diego, California, 1991, pp. 315318Google Scholar
Shidara, T., Akemoto, M., Yoshida, M., Takeda, S., Takata, K., Blumlein-type X-band klystron modulator for Japan linear collider, in Particle Accelerator Conference, San Francisco, California, 1991, vol. 2, pp. 10341036Google Scholar
Korovin, S.D., Gubanov, V.P., Gunin, A.V., Pegel, I.V., Stepchenko, A.S., Repetitive nanosecond high-voltage generator based on spiral forming line, in the 28th IEEE international Conference on Plasma Science, Las Vegas, NV, USA, 2001, pp. 12491251Google Scholar
Korovin, S.D., Kurkan, I.K., Loginov, S.V., Pegel, I.V., Polevin, S.D., Vollkov, S.N., Zherlitsyn, A.A., Laser Part. Beams 21, 175 (2003)CrossRef
Singal, V.P., Narayan, B.S., Nanu, K., Ron, P.H., Rev. Sci. Instrum. 72, 1862 (2001)CrossRef
Liu, Z.X., Zhang, J.D., Plasma Sci. Tech. 8, 596 (2006)
Liu, J.L., Yin, Y., Ge, B., Rev. Sci. Instrum. 78, 103302 (2007)CrossRef
Hegeler, F., McGeoch, M.W., Sethian, J.D., Sanders, H.D., Glidden, S.C., Myers, M.C., IEEE Trans. Dielectr. Electr. Insul. 8, 1205 (2011)CrossRef
Fan, Y.W., Zhong, H.H., Li, Z.Q., Phys. Plasmas 15, 083102 (2008)CrossRef
Mesyats, G.A., Korovin, S.D., Rostov, V.V., Proc. IEEE 92, 1166 (2004)CrossRef
Lewis, I.A.D., Wells, F.H., Millimicrosecond Pulse Techniques (Pergamon Press, London, 1959)Google Scholar
Cheng, X.B., Liu, J.L., Zhang, H.B., Feng, J.H., Qian, B.L., Phys. Rev. ST Accel. Beams 13, 070402 (2010)CrossRef
McMurtry, B.J., IRE Trans. Electron Devices 9, 210 (1962)CrossRef
Kino, G.S., Paik, S.F., J. Appl. Phys. 33, 3002 (1962)CrossRef
Paik, S.F., IEEE Trans. Electron Devices 16, 1010 (1969)CrossRef
Stark, L., J. Appl. Phys. 25, 1155 (1954)CrossRef
Agostino, S.D., Emma, F., Paoloni, C., IEEE Trans. Electron Devices 45, 1605 (1998)CrossRef
Chernin, D., Antonsen, T.M., Levush, B., IEEE Trans. Electron Devices 46, 1472 (1999)CrossRef
Greninger, P., IEEE Trans. Electron Devices 48, 12 (2001)CrossRef
Lopes, D.T., Motta, C.C., Loss tape-helix analysis of slow-wave-structures, in IEEE Pulsed Power Conference, Monterey, California, 2005, pp. 222225Google Scholar
Tien, P.K., Proc. IRE 41, 1617 (1953)CrossRef
Scotto, M., Parzen, P., IRE Trans. Electron Devices 3, 19 (1956)CrossRef
Sensiper, S., Proc. IRE 43, 149 (1955)CrossRef