Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T03:16:04.931Z Has data issue: false hasContentIssue false

Carbon nanotube/PEDOT:PSS electrodes for organic photovoltaics*

Published online by Cambridge University Press:  10 January 2007

E. Kymakis*
Affiliation:
Electrical Engineering Department & Center For Materials Technology and Lasers, Technological Educational Institute (TEI) of Crete, PB 1939, Heraklion 71 004, Crete, Greece
G. Klapsis
Affiliation:
Electrical Engineering Department & Center For Materials Technology and Lasers, Technological Educational Institute (TEI) of Crete, PB 1939, Heraklion 71 004, Crete, Greece
E. Koudoumas
Affiliation:
Electrical Engineering Department & Center For Materials Technology and Lasers, Technological Educational Institute (TEI) of Crete, PB 1939, Heraklion 71 004, Crete, Greece
E. Stratakis
Affiliation:
Electrical Engineering Department & Center For Materials Technology and Lasers, Technological Educational Institute (TEI) of Crete, PB 1939, Heraklion 71 004, Crete, Greece Department of Materials Science and Technology, University of Crete, PB 2208, 71003, Heraklion, Crete, Greece
N. Kornilios
Affiliation:
Electrical Engineering Department & Center For Materials Technology and Lasers, Technological Educational Institute (TEI) of Crete, PB 1939, Heraklion 71 004, Crete, Greece
N. Vidakis
Affiliation:
Mechanical Engineering Department, TEI of Crete, 71500, Crete, Greece
Y. Franghiadakis
Affiliation:
Sciences Department & Photovoltaic Park, TEI of Crete, Heraklion, 71500, Crete, Greece
Get access

Abstract

High conductive and transparent thin films based on carbon nanotube – poly(3,4-ethylene-dioxythiophene)-poly(styrene sulfonate), PEDOT-PSS blends have been used to replace the conventional indium tin oxide (ITO) as the hole collecting electrode in organic photovoltaic cells. Using PEDOT:PSS as the host material, excellent dispersion of functionalized single wall carbon nanotubes can be achieved enhancing the polymer's conductivity, while maintaining its excellent optical transparency. Photovoltaic cells with Poly(3-hexylthiophene), P3HT and [6,6]-phenyl-C61 butyric acid methyl ester (PCBM as the electron donor and acceptor on respectively on polymer-nanotube substrates have been fabricated and characterized. A power conversion efficiency of 1.3%, with a fill factor of 0.4, an open-circuit voltage of 0.6 V and a short-circuit current of 5.6 mA/cm2 under 100 mW/cm2 white light illumination are reported. These values are close with the reference cells made on ITO glass substrates with the same device structure and fabrication process. The only drawback is on the fill factor which is considerably smaller due to the high resistance of the polymer-nanotube film. Nevertheless, the results indicate that the spin casted polymer-nanotubes thin films are a low cost alternative to ITO for organic electronics.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper has been presented at “ECHOS06”, Paris, 28–30 juin 2006.

References

Brabec, C.J., Sariciftci, N.S., Hummelen, J.C., Adv. Func. Mater. 11, 15 (2001) 3.0.CO;2-A>CrossRef
Spanggaard, H., Krebs, F.C., Sol. Energ. Mat. Sol. C. 83, 125 (2004) CrossRef
Gang, L., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., Yang, Y., Nature Materials 4, 864 (2005)
Yu, G.,, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270, 17891 (1995) CrossRef
Xue, J., Uchida, S., Rand, B.P., Forrest, S.R., Appl. Phys. Lett. 84, 3013 (2004) CrossRef
Arias, A.C., Granstrom, M., Petritsch, K., Friend, R.H., Synthetic Met. 102, 953 (1999) CrossRef
Zhang, F., Johansson, M., Andersson, M.R., Hummelen, J.C., Inganäs, O., Adv. Mater. 14, 662 (2002) 3.0.CO;2-N>CrossRef
Coleman, J.N., Curran, S., Dalton, A.B. et al., Phys. Rev. B 58, R7492 (1998) CrossRef
Kymakis, E., Amaratunga, G.A.J., J. Appl. Phys. 99, 084302 (2006) CrossRef
Ago, H., Petritsch, K., Shaffer, M.S.P. et al., Adv. Mater. 11, 1281 (1999) 3.0.CO;2-6>CrossRef
Wu, Z., Chen, Z., Du, X., Logan, J.M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J.R., Tanner, D.B., Hebard, A.F., Rinzler, A.G., Science 305, 1273 (2004) CrossRef
Pasquier, A.D., Unalan, H.E., Kanwal, A., Miller, S., Chhowalla, M., Appl. Phys. Lett. 87, 203511 (2005) CrossRef
Kymakis, E., Amaratunga, G.A.J., Appl. Phys. Lett. 80, 112 (2002) CrossRef
Kymakis, E., Alexandrou, I., Amaratunga, G.A.J., J. Appl. Phys. 93, 1764 (2003) CrossRef
O'Connell, et al., Science 297, 5581 (2002) CrossRef