Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-dkqnh Total loading time: 0.267 Render date: 2021-10-19T13:34:36.729Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Correlation Between Plasma Chlorpromazine and its Metabolites and Clinical Ratings in Patients with Acute Relapse of Schizophrenic and Paranoid Psychosis

Published online by Cambridge University Press:  29 January 2018

O. T. Phillipson*
Affiliation:
MRC Neurochemical Pharmacology Unit, Department of Pharmacology, Cambridge
J. M. McKeown
Affiliation:
Fulbourn Hospital, Cambridge
J. Baker
Affiliation:
MRC Neurochemical Pharmacology Unit, Ida Darwin Hospital, Cambridge
A. F. Healey
Affiliation:
Clinical Chemistry Laboratory, Ida Darwin Hospital, Cambridge
*
Reprint requests and other correspondence to Dr Phillipson, Department of Anatomy, Karolinska Institute, S–104 01 Stockholm 60, Sweden.

Abstract

Nine patients diagnosed as having acute schizophrenic psychosis were treated with chlorpromazine. Their clinical response to drug treatment was measured by the use of a clinical rating scale developed from the Present State Examination, and a nurses rating scale. Plasma levels of chlorpromazine (CPZ), 7-hydroxychlorpromazine (7OHCPZ), monodesmethylchlorpromazine (NOR1CPZ) and chlorpromazine sulphoxide (SOCPZ), were monitored during the period of hospital treatment. Correlations were made between the increase in plasma levels of drug or metabolites and improvement in the different PSE scores. These showed that the most significant correlations occurred when symptoms with high diagnostic significance for schizophrenia (Group 1) and symptoms rating perceptual disorders (P) were correlated with plasma 7OHCPZ levels in plasma samples taken before the first morning dose of CPZ. The ratio of 7OHCPZ to CPZ in these samples increased significantly as clinical ratings improved, this correlation being most highly significant against the Group 1 and P scores. The ratio of 7OHPCZ to SOCPZ increased significantly only in the case of Group 1 and P scores. This indicates a preferential shift of CPZ metabolism towards the formation of the active 7OHCPZ during the period of clinical improvement.

Type
Research Article
Copyright
Copyright © Royal College of Psychiatrists 1977 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barry, III, Steenberg, M. L., Manian, A. A. & Buckley, J. P. (1974) Effects of chlorpromazine and three metabolites on behavioural responses in rats. Psycho-pharmacology (Berlin), 34, 351–60.Google ScholarPubMed
Bunney, B. S. & Aghajanian, G. K. (1974) Comparison of the effects of chlorpromazine and 7-hydroxychlorpromazine and chlorpromazine sulphoxide on the activity of central dopaminergic neurons. Life Sciences, 15, 309–18.CrossRefGoogle ScholarPubMed
Burt, D. R., Enna, S. J., Creese, I. & Snyder, S. H. (1975) Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proceedings of the National Academy of Science, USA, 72, No. 11, 4655–9.Google Scholar
Chapman, J. (1966) The early symptoms of schizophrenia. British Journal of Psychiatry, 112, 225–51.CrossRefGoogle ScholarPubMed
Coccia, P. F. & Westerfeld, W. W. (1967) The metabolism of chlorpromazine by liver microsomal enzyme systems. Journal of Pharmacology and Experimental Therapeutics, 157, 446.Google Scholar
Curry, S. H. (1968) Determination of nanogram quantities of chlorpromazine and some of its metabolites in plasma, using gas liquid chromatography with an electron capture detector. Analytical Chemistry, 40, 1251–5.CrossRefGoogle ScholarPubMed
Curry, S. H., Marshall, J. H. L., Davies, J. M. & Janowsky, D. S. (1970) Chlorpromazine plasma levels and effects. Archives of General Psychiatry, 22, 289–96.Google ScholarPubMed
Curry, S. H. (1971) Chlorpromazine: concentrations in plasma excretion in urine and duration of effect. Proceedings of the Royal Society of Medicine, 64, 285–9.Google ScholarPubMed
Dailey, J., Sedvall, G. & Sjöquist, B. (1972) Effect of chlorpromazine and some of its metabolites on the accumulation of homovanillic acid in brain of mice. Journal of Pharmacy and Pharmacology, 24, 580.CrossRefGoogle Scholar
Iversen, L. L. (1975) Dopamine receptors in the brain. Science, 188, 1084–9.CrossRefGoogle Scholar
Lal, S. & Sourkes, T. L. (1972) Effects of various chlorpromazine metabolites on amphetamine induced stereotyped behaviour in the rat. European Journal of Pharmacology, 17, 283–6.CrossRefGoogle ScholarPubMed
Mackay, A. V. P., Healey, A. F. & Baker, J. (1974) The relationship of plasma chlorpromazine to its 7-hydroxy and sulphoxide metabolites in a large population of chronic schizophrenics. British Journal of Clinical Pharmacology, 1, 425–30.CrossRefGoogle Scholar
Manian, A. A., Efron, D. H. & Goldberg, M. E. (1965) A comparative pharmacological study of a series of monohydroxylated and methoxylated chlorpromazine derivatives. Life Sciences, 4, 2425–38.CrossRefGoogle ScholarPubMed
Marchbanks, G. & Williams, M. (1971) Factors affecting word selection by schizophrenic patients. British Journal of Social and Clinical Psychology, 10, 241–52.CrossRefGoogle ScholarPubMed
Matthysse, S. (1973) Antipsychotic drug actions: a clue to the neuropathology of schizophrenia? Federation Proceedings, 32, 200–5.Google ScholarPubMed
Nybäck, H. & Sedvall, G. (1972) Effect of chlorpromazine and some of its metabolites on synthesis and turnover of catecholamines formed from 14C-tyrosine in mouse brain. Psychopharmacologia (Berlin), 26, 155–60.CrossRefGoogle Scholar
Sakalis, G., Chan, T. L., Gershon, S. & Park, S. (1973) The possible role of metabolites in the therapeutic response to chlorpromazine treatment. Psychopharmacologia (Berlin), 32, 279–84.CrossRefGoogle ScholarPubMed
Sakalis, G., Curry, S. H., Mould, G. P. & Lader, M. H. (1972) Physiologic and clinical effects of chlorpromazine and their relationship to plasma level. Clinical Pharmacology and Therapeutics, 13, 931–46.CrossRefGoogle ScholarPubMed
Seemen, P., Chan-Wong, M., Fedesco, J. & Wong, K. (1975) Proceedings of the National Academy of Science. USA, 72, No. 11, 4376–80.Google Scholar
Snyder, S. H. (1972) Catecholamines in the brain as mediators of amphetamine psychosis. Archives of General Psychiatry, 27, 169–79.CrossRefGoogle ScholarPubMed
Wing, I. K., Cooper, J. E. & Sartorius, N. (1972) The Measurement and Classification of Psychiatric Symptoms. Cambridge University Press.Google Scholar
Young, B. G. (1974) A phenomenological comparison of LSD and schizophrenic states. British Journal of Psychiatry, 124, 6474.CrossRefGoogle ScholarPubMed
Submit a response

eLetters

No eLetters have been published for this article.
43
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Correlation Between Plasma Chlorpromazine and its Metabolites and Clinical Ratings in Patients with Acute Relapse of Schizophrenic and Paranoid Psychosis
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Correlation Between Plasma Chlorpromazine and its Metabolites and Clinical Ratings in Patients with Acute Relapse of Schizophrenic and Paranoid Psychosis
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Correlation Between Plasma Chlorpromazine and its Metabolites and Clinical Ratings in Patients with Acute Relapse of Schizophrenic and Paranoid Psychosis
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *