Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T06:58:52.247Z Has data issue: false hasContentIssue false

Type IA Supernovae and Chemical Evolution of Galaxies

Published online by Cambridge University Press:  19 July 2016

K. Nomoto
Affiliation:
Department of Astronomy & Research Center for the Early Universe, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
C. Kobayashi
Affiliation:
Department of Astronomy & Research Center for the Early Universe, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
H. Umeda
Affiliation:
Department of Astronomy & Research Center for the Early Universe, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The cosmic/galactic chemical evolutions have been modeled with the early metal enrichment by Type II supernovae (SNe II) and the delayed enrichment of Fe by Type Ia supernovae (SNe Ia). However, the exact nature of SN Ia progenitors have been obscure. Here we present the currently most plausible scenario of the progenitor binary systems of SNe Ia. This scenario involves strong winds from accreting white dwarfs, which introduces important metallicity effects, namely, low-metallicity inhibition of SNe Ia. Resultant predictions for the Galactic/cosmic chemical evolution and the cosmic SNe Ia rate are presented. Another importance of identifying the SN Ia progenitors lies in the use of SNe Ia as a “standard candle” to determine cosmological parameters. To examine whether the “evolution” of SNe Ia with redshift and metallicity is significant, we discuss how the metallicity affects the properties of the C+O white dwarfs such as the C/O ratio, and find the metallicity dependence is rather weak.

Type
Conference Papers in order of Presentation
Copyright
Copyright © 2002 

References

Arnett, W.D. 1996, Nucleosynthesis and Supernovae (Princeton: Princeton Univ. Press).CrossRefGoogle Scholar
Barbuy, B., & Erdelyi-Mendes, M. 1989, A&A 214, 239.Google Scholar
Branch, D. 1998, ARA&A 36, 17.Google Scholar
Edvardsson, B. et al. 1993, A&A 275, 101.Google Scholar
Gratton, R. G. 1991, in IAU Symp. 145, Evolution of Stars: The Photometric Abundance Connection, ed. Michaud, G. & Tutukov, A. V. (Montreal: Univ. Montreal), 27.Google Scholar
Hachisu, I., Kato, M., & Nomoto, K. 1996, ApJ 470, L97 (HKN96).CrossRefGoogle Scholar
Hachisu, I., Kato, M., & Nomoto, K. 1998, ApJ, submitted (HKN98).Google Scholar
Höflich, P., Wheeler, J. C., & Thielemann, F. -K., 1998, ApJ 495, 617.CrossRefGoogle Scholar
Iben, I. Jr., & Tutukov, A. V. 1984, ApJ-S 54, 335.Google Scholar
Iglesias, C. A., & Rogers, F. 1993, ApJ 412, 752.CrossRefGoogle Scholar
Kobayashi, C., Tsujimoto, T., Nomoto, K., Hachisu, I, & Kato, M. 1998, ApJ 503, L155.CrossRefGoogle Scholar
Kodama, T., & Arimoto, N. 1997, A&A 320, 41.Google Scholar
Li, X. -D., & van den Heuvel, E. P. J. 1997, A&A 322, L9.Google Scholar
Lu, L., Sargent, W. L. W., Barlow, T. A., Churchill, C. W., & Vogt, S. S. 1996, ApJS 107, 475.CrossRefGoogle Scholar
Madau, P., Ferguson, H. C., Dickinson, M. E., Giavalisco, M., Steidel, C. C., & Fruchter, A. 1996, MNRAS 283, 1388.CrossRefGoogle Scholar
Nissen, P. E., Gustafsson, B., Edvardsson, B., & Gilmore, G. 1994, A&A 285, 440.Google Scholar
Nomoto, K., 1982, ApJ 253, 798.CrossRefGoogle Scholar
Nomoto, K., Iwamoto, K., & Kishimoto, N. 1997a, Science 276, 1378.CrossRefGoogle Scholar
Nomoto, K., Iwamoto, K., et al. 1997b, in Thermonuclear Supernovae, Eds. Ruiz-Lapuente, P. et al. (Dordrecht: Kluwer), 349.CrossRefGoogle Scholar
Nomoto, K., & Kondo, Y. 1991, ApJ 367, L19.CrossRefGoogle Scholar
Nomoto, K., Thielemann, F. -K., & Yokoi, K., 1984, ApJ, 286, 644.CrossRefGoogle Scholar
Nomoto, K., Yamaoka, H., Shigeyama, T., Kumagai, S., & Tsujimoto, T. 1994, in Supernovae, Les Houches Session LIV, ed. Bludman, S. A. et al. (Amsterdam: North-Holland), 199.Google Scholar
Pain, R., et al. 1996, ApJ 473, 356.CrossRefGoogle Scholar
Perlmutter, S., et al. 1997, ApJ 483, 565.CrossRefGoogle Scholar
Pettini, M., Kellogg, M., Steidel, C., Dickinson, M., Adelberger, K. L, & Giavalisco, M. 1998, ApJ 508, 539.CrossRefGoogle Scholar
Phillips, M. M. 1993, ApJ 413, L75.CrossRefGoogle Scholar
Riess, A.G., Press, W.H., & Kirshner, R.P. 1995, ApJ 438, L17.CrossRefGoogle Scholar
Ruiz-Lapuente, P., Canal, R., & Isern, J., eds. 1997, “Thermonuclear Supernovae” (Dordrecht: Kluwer).CrossRefGoogle Scholar
Schmidt, B. et al. 1998, ApJ 507, 46.CrossRefGoogle Scholar
Tsujimoto, T., Nomoto, K., Yoshii, Y., Hashimoto, M., Yanagida, S., & Thielemann, F.-K. 1995, MNRAS 277, 945.CrossRefGoogle Scholar
Tutukov, A. V., & Yungelson, L. R. 1994, MNRAS 268, 871.CrossRefGoogle Scholar
Umeda, H., Nomoto, K., Yamaoka, H., & Wanajo, S. 1998, ApJ, in press.Google Scholar
Webbink, R. F. 1984, ApJ 277, 355.CrossRefGoogle Scholar
Wheeler, J. C., Sneden, C., & Truran, J. W. 1989, ARA&A 27, 279.Google Scholar
Yungelson, L., & Livio, M. 1998, ApJ 497, 168.CrossRefGoogle Scholar