Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T01:51:51.028Z Has data issue: false hasContentIssue false

Two Types of Evolution of Massive Close Binary Systems

Published online by Cambridge University Press:  14 August 2015

C. De Loore
Affiliation:
Astrophysical Institute, Vrije Universiteit Brussel, Brussel, Belgium
J. P. De Greve
Affiliation:
Astrophysical Institute, Vrije Universiteit Brussel, Brussel, Belgium

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is well known that the outcome of case B evolution of the primaries of massive close binary systems (M1 ≥ 9 M) depends on the initial primary mass. The most massive primaries finally ignite carbon, form iron cores and presumably end in a supernova explosion, whereas the lighter ones presumably end as white dwarfs, without carbon ignition. This paper derives an estimate of the mass boundary separating these two kinds of evolution.

As an example of the first case, the evolution of a 20 M + 14 M system was computed; after the mass exchange, the primary star (with M = 5.43 M) evolves through the helium-burning (Wolf-Rayet) stage towards a supernova explosion; finally the system evolves into an X-ray binary (BWRX-evolution).

As a representative for the second case the evolution of a 10 M + 8 M system was examined. After the first stage of mass exchange, the primary (with a mass of 1.66 M) approaches the helium main sequence; during later phases of helium burning the radius increases again, and a second stage of mass transfer starts; after this the star (with a mass of 1.14 M) again evolves towards the left in the Hertzsprung-Russell diagram and ends as a white dwarf (BSWD-evolution). A system of 15 M + 8 M is found to evolve very similar to the 20 M + 14 M system. The mass Mu, separating the two types of evolution, must therefore be situated between 10 and 15 solar masses. An initial chemical composition X = 0.70, Z = 0.03 was used for all systems.

Type
Research Article
Copyright
Copyright © Reidel 1976 

References

Arnett, W. D.: 1973, in Schramm, D. and Arnett, W. D. (eds.), Explosive Nucleo-Synthesis , University of Texas Press, London, England.Google Scholar
Arnett, W. D.: 1974, in Tayler, R. J. (ed.), ‘Late Stages of Stellar Evolution’, IAU Symp. 66, 1.Google Scholar
Barbaro, G., Giannone, P., Gianuzzi, M. A., and Summa, C.: 1969, in Hack, M. (ed.), Mass Loss from Stars , Second Trieste Colloquium on Astrophysics, D. Reidel, Dordrecht, Holland, p. 217.CrossRefGoogle Scholar
De Grève, J. P. and De Loore, C.: 1975, Astron. Astrophys. 42, 91.Google Scholar
De Grève, J. P. and De Loore, C.: 1976, Astrophys. Space Sci. (in press).Google Scholar
De Loore, C.: 1972 (unpublished).Google Scholar
De Loore, C. and De Grève, J. P.: 1975, Astrophys. Space Sci. 35, 241.CrossRefGoogle Scholar
De Loore, C., De Grève, J. P., and De Cuyper, J. P.: 1975, Astrophys. Space Sci. 36, 219.CrossRefGoogle Scholar
Giannone, P. and Gianuzzi, M. A.: 1970, Astron. Astrophys. 6, 309.Google Scholar
Kippenhahn, R.: 1969, Astron. Astrophys. 5, 571.Google Scholar
Kippenhahn, R., Kohl, K., and Weigert, A.: 1967, Z. Astrophys. 66, 58.Google Scholar
Mikulásek, Z.: 1969, Bull. Astron. Inst. Czech. 20, 4.Google Scholar
Paczynski, B.: 1967, Acta Astron. 17, 355.Google Scholar
Paczynski, B.: 1968, in Perek, L. (ed.), Highlights in Astronomy , Proc. 13th General Assembly, IAU, D. Reidel, Dordrecht, Holland, p. 409.CrossRefGoogle Scholar
Paczynski, B.: 1970a, Acta Astron. 20, 47.Google Scholar
Paczynski, B.: 1970b, Acta Astron. 20, 195.Google Scholar
Paczynski, B.: 1971a, Acta Astron. 21, 1.Google Scholar
Paczynski, B.: 1971b, Ann. Rev. Astron. Astrophys. 9, 183.CrossRefGoogle Scholar
Paczynski, B.: 1974, in Tayler, R. J. (ed.), ‘Late Stages of Stellar Evolution’, IAU Symp. 66, 62.Google Scholar
Plavec, M.: 1968, Adv. Astron. Astrophys. 6, 201.CrossRefGoogle Scholar
Refsdal, S. and Weigert, A.: 1970, Astron. Astrophys. 6, 426.Google Scholar
Rose, W. K. and Smith, R. L.: 1970, Astrophys. J. 159, 903.CrossRefGoogle Scholar
Smith, L. F.: 1973, in Bappu, M. K. V. and Sahade, J. (eds.), ‘Wolf-Rayet and High-Temperature Stars’, IAU Symp. 49, 15.Google Scholar
Stothers, R.: 1972, Astrophys. J. 175, 715.Google Scholar
Stothers, R.: 1973, Astrophys. J. 184, 181.CrossRefGoogle Scholar
Tutukov, A. V., Yungel'son, L. R., and Kraitcheva, Z. T.: 1974, Proceedings of the 2nd IAU Regional Meeting, Trieste.Google Scholar
Van den Heuvel, E. P. J.: 1973, Nature, Phys. Sci. 242, 71.CrossRefGoogle Scholar
Van den Heuvel, E. P. J., and Heise, J.: 1972, Nature, Phys. Sci. 239, 67.CrossRefGoogle Scholar
Ziolkowski, J.: 1970, Acta Astron. 20, 213.Google Scholar
Ziolkowski, J.: 1974, Bull. Amer. Astron. Soc. 6, 263.Google Scholar