Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-17T18:26:44.363Z Has data issue: false hasContentIssue false

Supersoft ROSAT Sources in the Galaxies

Published online by Cambridge University Press:  25 May 2016

P. Kahabka
Affiliation:
Astronomical Institute' Anton Pannekoek, University of Amsterdam, and Center for High-Energy Astrophysics, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
J. Trümper
Affiliation:
Max-Planck-Institut für extraterrestrische Physik D-85740 Garching, FRG

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Before the X-ray surveys performed with EINSTEIN and ROSAT soft X-ray (or EUV) sources were claimed to exist (Iben 1982; Fujimoto 1982); they were looked for in the ultraviolet and indeed such sources were found in the symbiotic systems (which count as CV-like systems) and termed the hot component of symbiotics. Although the nature of these hot components has been subject to debate (in terms of either nuclear burning white dwarfs or accretion phenomena) observational facts were in many systems favouring the first scenario (Mikolajewska & Kenyon 1992). Symbiotic binaries require wide orbits in order to keep the big giant star within its Roche lobe. It is natural to look for the short-period counterpart, but it was much more difficult to detect them in the optical due to the faintness of the secondary, which is supposed to be an evolved main-sequence star or even smaller. What turns out in these systems to be predominant is the much brighter accretion disk. It was the unique chance of the satellite borne X-ray imaging instruments to discover these EUV and soft X-ray sources and with the EINSTEIN observatory the first firm candidates were found. However, complete coverage of the soft X-ray sky was needed in order to get them all and ROSAT was the instrument which mapped the whole sky.

Type
7 Cataclysmic Variables
Copyright
Copyright © Kluwer 1996 

References

Aller, L.H. & Keyes, C.D. 1987, ApJ 320, 159.Google Scholar
Brown, T., Cordova, F., Ciardullo, R. et al. 1994, ApJ 422, 118.Google Scholar
Callanan, P.J., Machin, G., Naylor, T. et al. 1989, MNRAS 241, 37P.Google Scholar
Cowley, A.P., Schmidtke, P.C., Crampton, D. et al. 1990, ApJ 350, 288.CrossRefGoogle Scholar
Crampton, D., Cowley, A.P., Hutchings, J.B. et al. 1987, ApJ 321, 745.Google Scholar
De Kool, M., Van den Heuvel, E.P.J. & Rappaport, S.A. 1986, A&A 164, 73.Google Scholar
Della Valle, M. & Livio, M. 1994, ApJ 423, L31.Google Scholar
Fleming, T.A., Schmitt, J.H.M.M., Barstow, M.A. & Mittas, J.P.D. 1991, A&A 246, L47.Google Scholar
Fujimoto, M.Y. 1982, ApJ 257, 767.Google Scholar
Greiner, J., Hasinger, G. & Kahabka, P. 1991, A&A 246, L17.Google Scholar
Greiner, J., Hasinger, G. & Thomas, H.-C. 1994, A&A 281, L61.Google Scholar
Hasinger, G. 1994, in: The Evolution of X-Ray Binaries , AIP Conference Proceedings 308, Holt, S.S. & Day, C.S. (Eds.), p. 611.Google Scholar
Heise, J., Van Teeseling, A. & Kahabka, P. 1994, A&A 288, L45.Google Scholar
Hertz, P., Grindlay, J.E. & Bailyn, C.D. 1993, ApJ 410, L87.Google Scholar
Iben, I. 1982, ApJ 259, 244.Google Scholar
Iben, I. & Tutukov, A.V. 1984, ApJS 54, 335.Google Scholar
Iben, I. & Tutukov, A.V. 1993, ApJ 418, 343.Google Scholar
Iben, I. & Tutukov, A.V. 1994, ApJ 431, 264.Google Scholar
Jones, L.R., Pye, J.P., McHardy, I.M. et al. 1985, Sp. Sci. Rev. 40, 693.CrossRefGoogle Scholar
Jordan, S., Mürset, U. & Werner, K. 1994, A&A 283, 475.Google Scholar
Kahabka, P. & Pietsch, W. 1993, in: New Aspects of Magellanic Cloud Research , Lecture Notes in Physics, Vol. 416, Baschek, B., Klare, G. & Lequeux, J. (Eds.), p. 71.Google Scholar
Kahabka, P., Pietsch, W. & Hasinger, G. 1994, A&A 288, 538.Google Scholar
Kylafis, N.D. & Xilouris, E.M. 1993, A&A 278, L43.Google Scholar
Livio, M. 1994, in: Proceedings of the Aspen Conference on Millisecond Pulsars: A Decade of Surprise , (in press).Google Scholar
Long, K.S., Helfand, D.J. & Grabelsky, D.A. 1981, ApJ 248, 925.Google Scholar
Mason, K.O., Branduardi-Raymont, G., Cordova, F.A. et al. 1987, MNRAS 226, 423.Google Scholar
Mikolajewska, J. & Kenyon, S.J. 1992, MNRAS 256, 177.Google Scholar
Morgan, D.H. 1992, MNRAS 258, 639.Google Scholar
Motch, C., Werner, K. & Pakull, M.W. 1993, A&A 268, 561.Google Scholar
Motch, C., Hasinger, G. & Pietsch, W. 1994, A&A 284, 827.Google Scholar
Nussbaumer, H. & Stencel, R.E. 1987, in: Exploring the Universe with the IUE Satellite , Kondo, Y. (Ed.), Reidel (Dordrecht), p. 203.Google Scholar
Ögelman, H., Krautter, J. & Beuermann, K. 1987, A&A 177, 110.Google Scholar
Ögelman, H., Orio, M. & Krautter, J. 1993, Nat 361, 331.Google Scholar
Orio, M. & Ögelman, H. 1993, A&A 273, L56.Google Scholar
Orio, M., Della Valle, M., Massone, G. et al. 1994, A&A 289, L11.Google Scholar
Paczynski, B. 1971, ARA&A 9, 183.Google Scholar
Pakull, M.W. & Angebaut, L.P. 1986, Nat 322, 511.Google Scholar
Pakull, M.W., Beuermann, K., Van der Klis, M. et al. 1988, A&A 203, L27.Google Scholar
Pakull, M.W., Motch, C., Bianchi, L. et al. 1993, A&A 278, L39.Google Scholar
Pietsch, W. & Kahabka, P. 1993, in: New Aspects of Magellanic Cloud Research , Lecture Notes in Physics, Vol. 416, Baschek, B., Klare, G. & Lequeux, J. (Eds.), p. 59.Google Scholar
Pylyser, E. & Savonije, G.J. 1988, A&A 208, 52.Google Scholar
Reinsch, K., Beuermann, K. & Thomas, H.-C. 1993, Astronomische Gesellschaft Abstract Series No. 9, 41.Google Scholar
Rappaport, S., Di Stefano, R. & Smith, J.D. 1994, ApJ 426, 692.Google Scholar
Rappaport, S., Chiang, E., Kallman, T. et al. 1994, ApJ 431, 237.Google Scholar
Savonije, G.J., De Kool, M. & Van den Heuvel, E.P.J. 1986, A&A 155, 51.Google Scholar
Schaeidt, S., Hasinger, G. & Trümper, J. 1993, A&A 270, L9.Google Scholar
Schmidtke, P.C., McGrath, T.K., Cowley, A.P. et al. 1993, PASP 105, 863.Google Scholar
Seward, F.D. & Mitchell, M. 1981, ApJ 243, 736.Google Scholar
Sion, E.M. & Starrfield, S.G. 1994, ApJ 421, 261.Google Scholar
Smale, A.P., Corbet, R.H.D. & Charles, P.A. 1988, MNRAS 233, 51.Google Scholar
Supper, R., Hasinger, G., Pietsch, W. et al. 1994, (preprint).Google Scholar
Trümper, J., Hasinger, G., Aschenbach, B. et al. 1991, Nat 349, 579.Google Scholar
Van den Heuvel, E.P.J., Bhattacharya, D., Nomoto, K. et al. 1992, A&A 262, 97.Google Scholar
Van Paradijs, J. 1983, in: Accretion-driven Stellar X-ray Sources , Lewin, W.H.G. & van den Heuvel, E.P.J. (Eds.), Cambridge University Press, p. 189.Google Scholar
Van Teeseling, A., Heise, J. & Kahabka, P. 1994, (preprint).Google Scholar
Vogel, M. & Morgan, D.H. 1994, A&A 288, 842.Google Scholar
Voges, W. 1992, in: Space Sciences with particular emphasis on High Energy Astrophysics , Proc. European ISY Symposium, p. 223.Google Scholar
Wang, Q. 1991, MNRAS 252, 47.Google Scholar
Wang, Q. & Wu, X. 1992 ApJS 78, 391.Google Scholar
White, N.E. & Holt, S.S. 1982, ApJ 257, 318.Google Scholar