Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T14:55:37.408Z Has data issue: false hasContentIssue false

The Structure and Evolution of Thorne-Żytkow Objects

Published online by Cambridge University Press:  25 May 2016

Philipp Podsiadlowski*
Affiliation:
Institute of Astronomy, Cambridge, CB3 0HA, United Kingdom

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Thorne-Żytkow objects (TŻOs) are red supergiants with neutron cores. The energy source in TŻOs with low-mass envelopes (≲8 M) is accretion onto the neutron core, while for TŻOs with massive envelopes (≲14 M) it is nuclear burning via the exotic rp process. TŻOs are expected to form as a result of unstable mass transfer in high-mass X-ray binaries, the direct collision of a neutron star with a massive companion after a supernova or the collision of a neutron star with a low-mass star in a globular cluster. We estimate a birth rate of massive TŻOs in the Galaxy of ∼2 10−4 yr−1. Thus, for a characteristic TŻO lifetime of 105–106 yr there should be 20–200 TŻOs in the Galaxy at present. These can be distinguished from ordinary red supergiants because of anomalously high surface abundances of lithium and rp-process elements, produced in the TŻO interior. The TŻO phase ends when either the star has exhausted its rp-process seed elements or the envelope mass decreases below a critical mass (∼14 M). Then nuclear burning becomes inefficient and a neutrino runaway ensues, leading to the dynamical accretion of matter near the core onto the neutron star and its spin up to spin frequencies of up to ∼100 Hz. The fate of the massive envelope is not entirely clear. If a significant fraction can be accreted onto the core, the formation of a black hole becomes likely. Part of the envelope may collapse into a massive disk which may ultimately become gravitationally unstable and lead to the formation of planets or even low-mass stars. We discuss the various possible outcomes and suggest a possible link between massive TŻOs and soft X-ray transients.

Type
1 Binary Evolution
Copyright
Copyright © Kluwer 1996 

References

Bailes, M. 1989, ApJ 342, 917.CrossRefGoogle Scholar
Begelman, M.L. & Meier, D.L. 1982, ApJ 253, 873.CrossRefGoogle Scholar
Bhattacharya, D. & Van den Heuvel, E.P.J. 1991, Phys. Rep. 203, 1.Google Scholar
Biehle, G.T. 1991, ApJ 380, 167.CrossRefGoogle Scholar
Biehle, G.T. 1994, ApJ 420, 364.Google Scholar
Bisnovatyi-Kogan, G.S. & Lamzin, S.A. 1984, SvA 28, 187.Google Scholar
Boesgaard, A.M. & Steigman, G. 1985, ARA&A 23, 319.Google Scholar
Brandt, W.N. & Podsiadlowski, Ph. 1994, MNRAS (submitted).Google Scholar
Cameron, A.G.W. 1955, ApJ 121, 144.Google Scholar
Cannon, R.C. 1993, MNRAS 263, 817.CrossRefGoogle Scholar
Cannon, R.C. et al. 1992, ApJ 386, 206.Google Scholar
Casares, J., Charles, P.A. & Naylor, T. 1992, Nat 355, 614.CrossRefGoogle Scholar
Charles, P.A. et al. 1994, in The Evolution of X-Ray Binaries , Holt, S.S. & Day, C.S. (Eds.), AIP Press (New York), p. 371.Google Scholar
Chevalier, R.A. 1994, ApJ 411, L33.Google Scholar
Clayton, D.D., 1968, Principles of Stellar Evolution and Nucleosynthesis , University of Chicago Press (Chicago).Google Scholar
Garmany, C.D., Conti, P.S. & Massey, P. 1980, ApJ 242, 1063.Google Scholar
Gamow, G. 1937, Structure of Atomic Nuclei and Nuclear Transformations , Oxford University Press (Oxford).Google Scholar
Humphreys, R.M. 1984, in Observational Tests of the Stellar Evolution Theory , Maeder, A. & Renzini, A. (Eds.), Reidel (Dordrecht), p. 279.Google Scholar
Krolik, J.H. 1984, ApJ 282, 452.Google Scholar
Kudritzki, R.P. & Reimers, D. 1978, A&A 70, 277.Google Scholar
Landau, L.D. 1938, Nat 141, 333.Google Scholar
Leonard, P.J.T., Hills, J.G. & Dewey, R.J. 1994, ApJ 423, L19.Google Scholar
Lyne, A.G. & Lorimer, D.R. 1994, Nat 369, 127.Google Scholar
Martin, E.L. et al. 1992, Nat 358, 129.Google Scholar
Michaud, G. & Charbonneau, P. 1991, Sp. Sci. Rev. 57, 1.Google Scholar
Naylor, T. & Podsiadlowski, Ph. 1993, MNRAS 262, 929.Google Scholar
Ostriker, J.P. & Gunn, J.E. 1971, ApJ 164, L95.CrossRefGoogle Scholar
Podsiadlowski, Ph., Cannon, R.C. & Rees, M.J. 1994, MNRAS (submitted).Google Scholar
Podsiadlowski, Ph., Joss, P.C. & Hsu, J.J.L. 1992, ApJ 391, 246.CrossRefGoogle Scholar
Ray, A., Kembhavi, A.K. & Antia, H.M. 1987, A&A 184, 164.Google Scholar
Romani, R.W. 1992, ApJ 399, 621.Google Scholar
Sackmann, I.-J. & Boothroyd, A.I. 1992, ApJ 392, L71.CrossRefGoogle Scholar
Taam, R. E. 1994, private communication.Google Scholar
Taam, R.E., Bodenheimer, P. & Ostriker, J.P. 1978, ApJ 222, 269.CrossRefGoogle Scholar
Tanaka, Y. 1992, in Evolutionary Processes in Binary Stars , Kondo, Y., Sisteró, R.F. & Polidan, R.S. (Eds.), Kluwer (Dordrecht), p. 215.Google Scholar
Thorne, K.S. & Żytkow, A.N. 1975, ApJ 199, L19.Google Scholar
Thorne, K.S. & Żytkow, A.N. 1977, ApJ 212, 832.Google Scholar
White, N.E. 1994, in The Evolution of X-Ray Binaries , Holt, S.S. & Day, C.S. (Eds.), AIP Press (New York), p. 53.Google Scholar