No CrossRef data available.
Published online by Cambridge University Press: 03 August 2017
The increasing precision of experiments designed to detect angular anisotropies and spectral distortions of the microwave background has now brought us near to or below the levels predicted by most theories of the formation of structure in the universe. Here I review the quantitative theoretical results for anisotropies and distortions for a wide variety of models. Many of these were presented in the Monday afternoon discussion session on the microwave background held at IAU Symposium 130. Primary and secondary anisotropies (and the associated distortions) are considered for universes with structure arising from initially Gaussian perturbations, especially the scale-invariant ones predicted by inflation, from accretion onto cosmic strings, and from shells generated by explosive energy injection, including that from superconducting strings as well as from supernovae.