Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-nrv4r Total loading time: 0.167 Render date: 2021-07-24T12:18:01.298Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Planetesimal Formation by Gravitational Instability—The Goldreich-Ward Hypothesis Revisited

Published online by Cambridge University Press:  26 May 2016

Andrew N. Youdin
Affiliation:
Astronomy Dept., University of California, Berkeley, CA 94720, USA
Frank H. Shu
Affiliation:
Astronomy Dept., University of California, Berkeley, CA 94720, USA

Abstract

We consider the formation of planetesimals via gravitational instability. While minimum solar nebula (MSN) models are known to be gravitationally stable, we find that sufficiently metal enriched and/or colder discs can yield planetesimals by the Goldreich-Ward mechanism (GWM). This is because the shear between gas and solids, previously believed to render the GWM ineffective, can only stir a finite amount of solids.

Type
Part II: Progress in the theory of planet formation
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Cuzzi, J. N., Dobrovolskis, A. R., & Champney, J. M. 1993, Icarus, 106, 102.CrossRefGoogle Scholar
Goldreich, P., & Ward, W. R. ApJ, 183, 105.Google Scholar
Hayashi, C. 1981, Prog. Theor. Phys. Supp., 70, 35.CrossRefGoogle Scholar
Osterloh, M., & Beckwith, S. V. W. 1995, ApJ, 439, 288.CrossRefGoogle Scholar
Safronov, V. S. 1969, Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets. (Moscow: Nauka Press)Google Scholar
Sekiya, M. 1983, Progress in Theoretical Physics, 69, 1116.CrossRefGoogle Scholar
Sekiya, M. 1998, Icarus, 133, 298.CrossRefGoogle Scholar
Weidenschilling, S. J. 1980, Icarus, 44, 172.CrossRefGoogle Scholar
You have Access
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Planetesimal Formation by Gravitational Instability—The Goldreich-Ward Hypothesis Revisited
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Planetesimal Formation by Gravitational Instability—The Goldreich-Ward Hypothesis Revisited
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Planetesimal Formation by Gravitational Instability—The Goldreich-Ward Hypothesis Revisited
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *