Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-01T08:04:10.541Z Has data issue: false hasContentIssue false

Physical and Chemical Properties of Polycyclic Aromatic Hydrocarbons

Published online by Cambridge University Press:  23 September 2016

S. Leach*
Affiliation:
Département Atomes et Molécules en Astrophysique Observatoire de Paris-Meudon 92190 – Meudon, France Laboratoire de Photophysique Moléculaire du C. N. R. S. Bâtiment 213, Université Paris-Sud 91405 – Orsay, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A review is presented of some physical and chemical properties of polycyclic aromatic hydrocarbons (PAHs) that are relevant for interpreting various aspects of observations and speculations on PAHs in the interstellar medium. The subjects discussed are: the stability and reactivity of neutral and ionic PAHs; the spectroscopy and photophysics of neutral and monocationic PAHs; the photostabilities of PAH monocations and dications and their astrophysical implications.

Type
Section II: The Overidentified Infrared Emission Features
Copyright
Copyright © Kluwer 1989 

References

Aihara, J. 1987, Bull. Chem. Soc. Japan, 60, 3143.Google Scholar
Alberty, R. A. and Reif, A. K. 1988, J. Phys. Chem. Ref. Data, 17, 241.Google Scholar
Allomandola, L. J., Tielens, A. G. G. M., and Barker, J. R. 1985, Ap. J., 290, L25.Google Scholar
Amirav, A., Even, U., and Jortner, J. 1981, J. Chem. Phys., 74, 3745.Google Scholar
Babbitt, R. J., Ho, C. J., and Topp, M. R. 1988, J. Phys. Chem., 92, 2422.Google Scholar
Baer, T. 1986, Adv. Chem. Phys., 64, 111.Google Scholar
Balaban, A. T., et al. 1987, Z. Naturforsch, 42a, 863.Google Scholar
Barker, J. R. and Cherchneff, I. 1989, in IAU Symposium 135, Interstellar Dust, eds. Allamandola, L. J. and Tielens, A. G. G. M., (Dordrecht: Kluwer), p. 197.Google Scholar
Becker, R. S., and Wentworth, W. E. 1963, J. Am. Chem. Soc., 85, 2210.CrossRefGoogle Scholar
Bermudes, G., and Chan, I. Y. 1986, J. Phys. Chem., 90, 5029.Google Scholar
Bermudes, G., and Chan, I. Y. 1987, J. Phys., Chem., 91, 4710.Google Scholar
Boschi, R., Clar, E., and Schmidt, W. 1974, J. Chem. Phys., 60, 4406.Google Scholar
Braitbart, O., Castellucci, E., Dujardin, G., and Leach, S. 1983, J. Phys. Chem., 87, 4799.Google Scholar
Clar, E. 1941, Aromatische Kohlenwasserstoffe, (Berlin: Springer).CrossRefGoogle Scholar
Clar, E. 1964, Polycyclic Hydrocarbons, (New York: Academic).Google Scholar
Clar, E. 1972, The Aromatic Sextet, (London: Wiley), Chap. 6.Google Scholar
Clar, E., Robertson, J. M., Schlögl, R., and Schmidt, W. 1981, J. Am. Chem. Soc., 103, 1320.Google Scholar
Coulson, C. A., and Rushbrooke, G. S. 1940, Proc. Camb. Phil. Soc., 36, 193.Google Scholar
Désert, F. X., Léger, A., d'Hendecourt, L., and Boissel, P. 1987, unpublished, cited by Ryter, , Puget, and Pérault, 1987.Google Scholar
d'Hendecourt, L. B., Léger, A., Boissel, P., Désert, F. X. 1989, in IAU Symposium 135, Interstellar Dust, eds. Allamandola, L. J. and Tielens, A. G. G. M., (Dordrecht: Kluwer), p. 207.CrossRefGoogle Scholar
Dias, J. R. 1986, J. Molec. Structure (Theochem), 137, 9.Google Scholar
Duley, W. W. 1986, in Polycyclic Aromatic Hydrocarbons and Astrophysics, ed. Léger, A., d'Hendecourt, L. and Boccara, N., (Dordrecht: Reidel), p. 373.Google Scholar
Duley, W. W. and Williams, D. A. 1981, M. N. R. A. S., 196, 269.Google Scholar
Duley, W. W. and Williams, D. A. 1986, M. N. R. A. S., 219, 859.Google Scholar
Dunbar, R. C. 1983, J. Phys. Chem., 87, 3105.Google Scholar
Dunbar, R. C. 1986, Chem. Phys. Lett., 125, 543.Google Scholar
Feigelson, E. D., and Frenklach, M. 1989, in Interstellar Dust Contributed Papers, eds. Tielens, A. G. G. M. and Allamandola, L. J., NASA CP-3036.Google Scholar
Frenklach, M., and Ebert, L. B. 1988, J. Phys. Chem., 92, 561.CrossRefGoogle Scholar
Gallegos, E. J. 1968, J. Phys. Chem., 72, 3452.Google Scholar
Haddon, R. C. 1988, Acc. Chem. Res., 21, 243.Google Scholar
He, W. J., et al. 1988, Z. Naturforsch., 43a, 693.Google Scholar
Hinchcliffe, A., Munn, R. W., and Siebrand, W. 1983, J. Phys. Chem., 87, 3837.Google Scholar
Keller, R. 1987, in Polycyclic Aromatic Hydrocarbons and Astrophysics, eds. Léger, A., d'Hendecourt, L. and Boccara, N., (Dordrecht: Reidel), p. 387.Google Scholar
Khan, Z. H. 1984, Z. Naturforsch, 39a, 668.Google Scholar
Khan, Z. H. 1987, Z. Naturforsch, 42a, 91.CrossRefGoogle Scholar
Khan, Z. H. 1988, Spectrochim. Acta, 44A, 313.Google Scholar
Kiermeier, A., Kühlewind, E.L. Neusser, H. J., and Schlag, E. W. 1988, J. Chem. Phys., 88, 6182.Google Scholar
Kim, M. S. and Dunbar, R. C. 1980, J. Chem. Phys., 72, 4405.Google Scholar
Kingston, R. G., Guilhaus, M., Brenton, A. G., and Beynon, J. H. 1985, Org. Mass Spectrom., 20, 406.Google Scholar
Koch, E. E., and Otto, A. 1972, Chem. Phys. Lett., 12, 476.Google Scholar
Koch, E. E., Otto, A. and Radler, K. 1972, Chem. Phys. Lett., 16, 131.Google Scholar
Koopmans, T. 1934, Physica, 1, 104.CrossRefGoogle Scholar
Koppel, H., Cederbaum, L. S., and Domcke, W. 1988, J. Chem. Phys., 89, 2023.CrossRefGoogle Scholar
Kühlewind, H., Kiermeier, A., Neusser, H. J. and Schlag, E. W. 1987, J. Chem. Phys., 87, 6488.Google Scholar
Leach, S. 1986, J. Electron Spectr. Rel. Phen., 41, 427.Google Scholar
Leach, S. 1987, in Polycyclic Aromatic Hydrocarbons and Astrophysics, eds. Léger, A., d'Hendecourt, L. and Boccara, N., (Dordrecht: Reidel), p. 99.CrossRefGoogle Scholar
Leach, S., Eland, J. H. D. and Price, S. D. 1989a J. Phys. Chem., submitted.Google Scholar
Leach, S., Eland, J. H. D. and Price, S. D. 1989b J. Phys. Chem., submitted.Google Scholar
Léger, A., and Puget, J. L. 1984, Astr. Ap., 137, L5.Google Scholar
Léger, A., and d'Hendecourt, L. 1985, Astr. Ap., 146, 81.Google Scholar
Lepp, S., and Dalgarno, A. 1988, Ap. J., 324, 553.CrossRefGoogle Scholar
Lepp, S., Dalgarno, A., Van Dishoeck, E. F. and Black, J. H. 1988, Ap. J., 329, 418.Google Scholar
Mathur, B. P., Burgess, E. M., Bostwick, D. E. and Moran, T. F. 1981, Org. Mass Spectrom., 16, 92.Google Scholar
Mulliken, R. S., Rieke, C. A. and Brown, W. G. 1941, J. Am. Chem. Soc., 63, 41.Google Scholar
Omont, A. 1986, Astr. Ap., 164, 159.Google Scholar
Orlandi, G., and Zerbetto, F. 1988, Chem. Phys., 123, 175.Google Scholar
Puget, J. L., Léger, A. and Boulanger, F. 1985, Astr. Ap., 142, L19.Google Scholar
Rosenstock, H. M., Draxl, K., Steiner, B. W., and Herron, J. T. 1977, J. Phys. Chem. Ref. Data, 6, 1.Google Scholar
Rühl, E., Price, S. D. and Leach, S. 1988, J. Phys. Chem., submitted.Google Scholar
Ryter, C., Puget, J. L. and Pérault, M. 1987, Astr. Ap., 186, 312.Google Scholar
Salem, L. 1966, The Molecular Orbital Theory of Conjugated Systems, (New York: Benjamin), chap. 3.Google Scholar
Schmidt, W. 1977, J. Chem. Phys., 66, 828.Google Scholar
Shida, T., and Iwata, S. 1973, J. Am. Chem. Soc., 95, 3473.Google Scholar
Smith, F. T. 1961, J. Chem. Phys., 34, 793.Google Scholar
Stein, S. E. 1983, Combustion and Flame, 51, 357.Google Scholar
Stein, S. E. and Brown, R. L. 1987, J. Am. Chem. Soc., 109, 3721.Google Scholar
Syage, J. A., and Wessel, J. E. 1987, J. Chem. Phys., 87, 3313.Google Scholar
Trinajstic, N. 1983, Chemical Graph Theory, (Boca Raton: CRC Press) Vol. II.Google Scholar
Van der Zwet, G. P. and Allamandola, L. J. 1985, Astr. Ap., 146, 76.Google Scholar
Van Velzen, P. N. T., and Van der Hart, W. J. 1981, Chem. Phys., 61, 325.Google Scholar
Wacks, M. E. 1964, J. Chem. Phys., 41, 1661.Google Scholar
Winnewisser, G. and Herbst, E. 1987, Topics Curr. Chem., 139, 119.CrossRefGoogle Scholar