Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T03:07:42.924Z Has data issue: false hasContentIssue false

On the Growth Mechanism of Grains in a Primordial Stage of the Solar Nebula

Published online by Cambridge University Press:  14 August 2015

A. Carusi
Affiliation:
Istituto di Geologia e Paleontologia, Università di Roma, Italy
A. Coradini
Affiliation:
Istituto di Geologia e Paleontologia, Università di Roma, Italy
C. Federico
Affiliation:
Istituto di Geologia e Paleontologia, Università di Roma, Italy
M. Fulchignoni
Affiliation:
Laboratorio di Astrofisica Spaziale, CNR, Frascati, Italy
G. Magni
Affiliation:
Laboratorio di Astrofisica Spaziale, CNR, Frascati, Italy

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Grain accretion processes in a protoplanetary nebula have been studied regarding: (a) the distribution function of grain velocities; (b) electrostatic and electromagnetic mechanisms between grains. The velocity distribution function has been investigated for grains embedded in a turbulent gaseous medium. Results have been obtained for protoplanetary nebula densities ranging from 10−19 to 10−10 g cm−3. Considering interactions between two grains, photoelectrically charged by galactic ultraviolet flux and by charged-particle capture, and solid-solid interactions (dipole fluctuation effect), the authors estimate the physical cross section σ(v) with respect to the geometric one σ0. Then a statistical approach for an assembly of grains gives the accretion or destruction rates for these small particles. Therefore, according to their characteristic velocities, the following processes have been studied: rupture, fusion, vaporization.

Type
Part I Origin and General Physics of the Planetary System
Copyright
Copyright © Reidel 1974 

References

Cameron, A. G. W.: 1972, Symposium on the Origin of the Solar System, Nice, p. 52.Google Scholar
Carusi, A., Coradini, A., Fulchignoni, M., and Magni, G.: 1972, in Runcorn, S. K. and Urey, H. C. (eds.), ‘The Moon’, IAU Symp. 47, 180.Google Scholar
Chapman, S. and Cowling, T. G.: 1961, Mathematical Theory of Non Uniform Gases, Cambridge University Press.Google Scholar
Coradini, A.: 1970, , University of Roma.Google Scholar
Epstein, P. S.: 1924, Phys. Rev. 23, 710.Google Scholar
Feuerbacher, B., Willis, R. F., and Fitton, B.: 1973, Astrophys. J. 181, 101.CrossRefGoogle Scholar
Gillet, F. C., Merrill, K. M., and Stein, W. A.: 1972, Astrophys. J. 164, 83.CrossRefGoogle Scholar
Greenberg, M. J.: 1972, Symposium on the Origin of the Solar System, Nice, p. 135.Google Scholar
Hayakawa, S., Yamashita, K., and Yoshioka, S.: 1969, Astrophys. Space Sci. 5, 493.Google Scholar
Landau, L. and Lifchitz, E.: 1969, Electrodynamique des milieux continus, MIR.Google Scholar
Landau, L. and Lifchitz, E.: 1971, Mécanique des fluides, MIR.Google Scholar
Larson, B. R.: 1969, Monthly Notices Roy. Astron. Soc. 145, 271.CrossRefGoogle Scholar
Larson, B. R.: 1972, Monthly Notices Roy. Astron. Soc. 156, 437.Google Scholar
Larson, B. R.: 1972, Symposium on the Origin of the Solar System, Nice, p. 142.Google Scholar
Lequeux, J.: 1972, Symposium on the Origin of the Solar System, Nice, p. 118.Google Scholar
Maurette, M. and Bibring, J. P.: 1972, Symposium on the Origin of the Solar System, Nice, p. 284.Google Scholar
Orowan, E.: 1969, Nature 222, 867.Google Scholar
Saffman, P. G. and Turner, J. S.: 1956, J. Fluid. Mech. 1, 16.Google Scholar
Safronov, V. S.: 1972, Symposium on the Origin of the Solar System, Nice, p. 89.Google Scholar
Spitzer, L. Jr. and Tomasko, M. G.: 1968, Astrophys. J. 152, 971.Google Scholar
Watson, W. D.: 1972, Astrophys. J. 176, 103.Google Scholar
Wickramasinghe, N. C.: 1967, Interstellar Grains, Chapman & Hall.Google Scholar
Woolf, N. J. and Ney, E. P.: 1969, Astrophys. J. 155, L181.Google Scholar