Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-06T13:50:53.155Z Has data issue: false hasContentIssue false

New Results on CMB Structure from the Tenerife Experiments

Published online by Cambridge University Press:  25 May 2016

R.D. Davies
Affiliation:
University of Manchester, Nuffield Radio Astronomy Laboratories, Jodrell Bank, Macclesfield SK11 9DL, UK
C.M. Gutiérrez
Affiliation:
University of Manchester, Nuffield Radio Astronomy Laboratories, Jodrell Bank, Macclesfield SK11 9DL, UK
R.A. Watson
Affiliation:
Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain
R. Rebolo
Affiliation:
Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain
A.N. Lasenby
Affiliation:
Mullard Radio Astronomy Observatory, Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK
S. Hancock
Affiliation:
Mullard Radio Astronomy Observatory, Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Temperature fluctuations in the CMB (Cosmic Microwave Background) are a key prediction of cosmological models of structure formation in the early Universe. Observations at the Teide Observatory, Tenerife using radiometers operating at 10, 15 and 33 GHz have revealed individual hot and cold features in the microwave sky at high Galactic latitudes. These well-defined features are not atmospheric or Galactic in origin; they represent the first detection of individual primordial fluctuations in the CMB. Their intensity is defined by an intrinsic rms amplitude of 54−10+14 μK for a model with a coherence angle of 4°. The expected quadrupole term for a Harrison-Zel'dovich spectrum is QRMS–PS = 26 ± 6 μK. When our data at Dec=+40° are compared with the COBE DMR two-year data, the presence of individual features is confirmed. New experiments to detect structure on smaller scales are described.

Type
Part II: Contributed Papers
Copyright
Copyright © Kluwer 1996 

References

Bennett, C.L. et al. 1994, Astrophys. J., (in press).Google Scholar
Cheng, E.S. et al. 1994, Astrophys. J., 422, L37.CrossRefGoogle Scholar
Clapp, A. et al. 1994, Astrophys. J., 433, L57.Google Scholar
Davies, R.D., Watson, R.A., Daintree, E.J., Hopkins, J., Lasenby, A.N., Sanchez-Almeida, J., Beckman, J.E., & Rebolo, R. 1992, Mon. Not. Roy. Soc., 258, 605.CrossRefGoogle Scholar
De Bernardis, P. et al. 1994, Astrophys. J., 422, L33.Google Scholar
Ganga, K., Cheng, E., Meyer, S., & Page, L. 1993, Astrophys. J., 410, L57.Google Scholar
Lawson, K.D., Mayer, C.J., Osborne, J.L., & Parkinson, M.L. 1987, Mon. Not. Roy. Soc., 225, 307.Google Scholar
Hancock, S., Davies, R.D., Lasenby, A.N., Gutierrez de la Cruz, C.M., Watson, R.A., Rebolo, R., & Beckman, J.E. 1994, Nature, 367, 333.Google Scholar
Schuster, J. et al. 1993, Astrophys. J., 412, L47.Google Scholar
Smoot, G.F. et al. 1992, Astrophys. J., 396, L1.CrossRefGoogle Scholar
Strukov, I.A., Brukhanov, A.A., Skulachev, D.P., & Sazhin, M.V. 1993, Phys. Lett., B, 315, 198.Google Scholar
Watson, R.A., Gutierrez de la Cruz, C.M., Davies, R.D., Lasenby, A.N., Rebolo, R., Beckman, J.E., & Hancock, S. 1992, Nature, 357, 660.Google Scholar
Wollack, E.J., Jarosik, N.C., Netterfield, C.B., Page, L.A., & Wilkinson, D., 1993, Astrophys. J., 419, L49.Google Scholar