Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-18T17:53:27.699Z Has data issue: false hasContentIssue false

The Microbial Community of a Radon Hot Spring

Published online by Cambridge University Press:  19 September 2017

Roberto P. Anitori
Affiliation:
Department of Biological Sciences, Macquarie University, North Ryde, 2109, Australia
Cherida Trott
Affiliation:
School of Biological Sciences, Private Bag 90219, University of Auckland
David J. Saul
Affiliation:
School of Biological Sciences, Private Bag 90219, University of Auckland
Peter L. Bergquist
Affiliation:
Department of Biological Sciences, Macquarie University, North Ryde, 2109, Australia
Malcolm R. Walter
Affiliation:
Department of Earth and Planetary Sciences, Macquarie University, North Ryde, 2109, Australia

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Paralana is an active, radon-containing hot spring situated in a region of South Australia's Flinders Ranges with a long history of hydrothermal activity. Gas bubbling into the pool is composed of radon (from the radioactive decay of radium), nitrogen, carbon dioxide, and trace helium and hydrogen. The microbial composition of mat and biofilm samples from Paralana was determined using culture-independent 16S rRNA techniques. We have previously demonstrated that the hot spring contains a diverse bacterial community. Here we summarise these findings and report on the Archaea identified in Paralana. Archaeal inhabitants include members of the Crenarchaeota and Euryarchaeota kingdoms.

Type
Archaea
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Anitori, R. P., Trott, C., Saul, D. J., Bergquist, P. L., & Walter, M. 2002, Astrobiology, 2, 255 CrossRefGoogle Scholar
Barns, S. M., Fundyga, R. E., Jeffries, M. W., & Pace, N. R. 1994, Proc. Natl. Acad. Sci. U.S.A., 91, 1609 CrossRefGoogle Scholar
Barns, S. M., Delwiche, C. F., Palmer, J. D., & Pace, N.R. 1996, Proc. Natl. Acad. Sci. U.S.A., 93, 9188 Google Scholar
Beverley Uranium Mine Environmental Impact Statement. 1998, Heathgate Resources Pty. Ltd. Adelaide Google Scholar
Chandler, D. P., Brockman, F. J., Bailey, T. J., & Fredrickson, J. K. 1998, Microb. Ecol., 36, 37 Google Scholar
Godon, J-J., Zumstein, E., Dabert, P., Habouzit, F., & Moletta, R. 1997, Appl. Environ. Microbiol., 63, 2802 CrossRefGoogle Scholar
Grant, K. 1938, Trans. Roy. Soc. S.A., 62, 357 Google Scholar
Kanal, H., Kobayashi, T., Aono, R., & Kudo, T. 1995, Int. J. Syst. Bacteriol., 45, 762 Google Scholar
Liu, H., & Dilbar, T. 2000, Unpublished GenBank entry.Google Scholar
Pirlo, M. 2002, Ph.D. thesis, Macquarie University, N.S.W., AustraliaGoogle Scholar
Sako, Y., Nunoura, T., & Uchida, A. 2001, Int. J. Syst. Evol. Microbiol. 51, 303 CrossRefGoogle Scholar
Shahmohammadi, H. R., Asgarani, E., Terato, H., Ide, H., & Yamamoto, O. 1997, J. Radiat. Res. (Tokyo), 38, 37 Google Scholar
Staley, J. T., & Konopka, A. 1985, Ann. Rev. Microbiol., 39, 321 Google Scholar
Skirnisdottir, S., Hreggvidsson, G. O., Hjorleifsdottir, S., Marteinsson, V. T., Petursdottir, S. K., Holst, O., & Kristjansson, J. K. 2000, Appl. Environ. Microbiol., 66, 2835 CrossRefGoogle Scholar
Swofford, D. L. 2002, PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4, (Sinauer Associates: Sunderland, Massachusetts)Google Scholar