Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-23T22:02:59.978Z Has data issue: false hasContentIssue false

Internal Rotation, Mixing and Lithium Abundances

Published online by Cambridge University Press:  08 February 2017

Brian Chaboyer*
Affiliation:
Steward Observatory, University of Arizona, Tucson, AZ, USA 85710

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Lithium is an excellent tracer of mixing in stars as it is destroyed (by nuclear reactions) at a temperature around ~ 2.5 × 106 K. The lithium destruction zone is typically located in the radiative region of a star. If the radiative regions are stable, the observed surface value of lithium should remain constant with time. However, comparison of the meteoritic and photospheric Li abundances in the Sun indicate that the surface abundance of Li in the Sun has been depleted by more than two orders of magnitude. This is not predicted by solar models and is a long standing problem. Observations of Li in open clusters indicate that Li depletion is occurring on the main sequence. Furthermore, there is now compelling observational evidence that a spread of lithium abundances is present in nearly identical stars. This suggests that some transport process is occurring in stellar radiative regions. Helioseismic inversions support this conclusion, for they suggest that standard solar models need to be modified below the base of the convection zone. There are a number of possible theoretical explanations for this transport process. The relation between Li abundances, rotation rates and the presence of a tidally locked companion along with the observed internal rotation in the Sun indicate that the mixing is most likely induced by rotation. The current status of non-standard (particularly rotational) stellar models which attempt to account for the lithium observations are reviewed.

Type
I. Global Structure and Evolution of the Solar and Stellar Interior
Copyright
Copyright © Kluwer 1998 

References

Ahrens, B., Stix, M. & Thorn, M. 1992, A&A, 262, 673 Google Scholar
Anders, E. & Grevesse, N. 1989, Geochim. Cosmochim. Acta, 56, 197 CrossRefGoogle Scholar
Balachandran, S. 1995, ApJ, 446, 203 Google Scholar
Barrado y Navascués, D. & Stauffer, J.R. 1996, A&A, 310, 879 Google Scholar
Basu, S. 1997, MNRAS, 288, 572 Google Scholar
Boesgaard, A.M. 1991, ApJ, 370, L95 CrossRefGoogle Scholar
Boesgaard, A.M., Deliyannis, C.P., Stephens, A. & King, J.R. 1998, ApJ, 493, 206 Google Scholar
Boesgaard, A.M. & Friel, E.D. 1990, ApJ, 351, 467 Google Scholar
Boesgaard, A.M. & Tripicco, M.J. 1986, ApJ, 302, L49 CrossRefGoogle Scholar
Bonifacio, P. & Molaro, P. 1997, MNRAS, 285, 847 CrossRefGoogle Scholar
Chaboyer, B. 1995, in Stellar Evolution: What Should Be Done?, eds. Noels, A., Fraipont-Caro, D., Gabriel, M., Grevesse, N. & Demarque, P. (Liège: Institut d'Astrophysique), 345358 441, 876 Google Scholar
Chaboyer, B. & Demarque, P. 1994, ApJ, 433, 510 Google Scholar
Chaboyer, B., Demarque, P. & Pinsonneault, M.H. 1995, ApJ, 441, 865 CrossRefGoogle Scholar
Chaboyer, B., Demarque, P. & Pinsonneault, M.H. 1995, ApJ, 441, 876 CrossRefGoogle Scholar
Charbonnel, C., Vauclair, S., Maeder, A., Meynet, G. & Schaller, G. 1994, A&A, 283, 155 Google Scholar
Charbonnel, C., Vauclair, S. & Zahn, J.-P. 1992, A&A, 255, 191 Google Scholar
Charbonneau, P. & Michaud, G. 1988, ApJ, 334, 746 Google Scholar
Christensen-Dalsgaard, J., Proffitt, C.R. & Thompson, M.J. 1993, ApJ, 403, L75 Google Scholar
Corbard, T., Berthomieu, G., Provost, J. & Morel, P. 1998, A&A, 330, 1149 Google Scholar
Corbard, T., Berthomieu, G., Morel, P., Provost, J., Schou, J. & Tomczyk, S. 1997, A&A, 324, 298 Google Scholar
Deliyannis, C.P. & Malaney, R.A. 1995, ApJ, 453, 810 Google Scholar
Deliyannis, C.P., Pinsonneault, M.H. & Duncan, D.K. 1993, ApJ, 414, 740 CrossRefGoogle Scholar
Deliyannis, C.P. & Pinsonneault, M.H. 1997, ApJ, 488, 836 Google Scholar
Deliyannis, C.P., Ryan, S.G., Beers, T.C., Thorburn, J.A. 1994, ApJ, 425, L21 Google Scholar
Eddington, A.S. 1925, Observatory, 48, 73 Google Scholar
García López, R.J. & Spruit, H.C. 1991, ApJ, 377, 268 CrossRefGoogle Scholar
Gough, D.O., et al. 1996, Science, 272, 1296 CrossRefGoogle Scholar
Greenstein, J.L. & Richardson, R.S. 1951, ApJ, 113, 536 CrossRefGoogle Scholar
Guenther, D.B., Kim, Y.-C. & Demarque, P. 1996, ApJ, 463, 382 Google Scholar
Harvey, J.W. et al. 1996, Science, 272, 1284 Google Scholar
Hobbs, L.M. & Duncan, D.K. 1987, ApJ, 317, 796 Google Scholar
Hobbs, L.M. & Thorburn, J.A. 1991, ApJ, 375, 116 Google Scholar
Hobbs, L.M. & Thorburn, J.A. 1997, ApJ, 491, 772 Google Scholar
Hobbs, L.M., Welty, D.E. & Thorburn, J.A. 1991, ApJ, 373, L47 CrossRefGoogle Scholar
Jones, B.F., Fischer, D., Shetrone, M. & Soderblom, D.R. 1997, AJ, 114, 352 CrossRefGoogle Scholar
King, J.R., Deliyannis, C.P. & Moesgaard, A.M. 1997, ApJ, 478, 778 CrossRefGoogle Scholar
Kumar, P. & Quataert, E.J. 1997, ApJ, 475, L143 CrossRefGoogle Scholar
Kosovichev, A.G. et al. 1997, Solar Physics, 170, 43 CrossRefGoogle Scholar
Michaud, G. 1986, ApJ, 302, 650 Google Scholar
Molaro, P., Primas, F., Bonifacio, P. 1994, A&A, 295, L47 Google Scholar
Perryman, M.A.C. et al. 1998, A&A, 331, 81 Google Scholar
Pilachowski, C.A., Sneden, C. & Booth, J. 1993, ApJ, 407, 699 CrossRefGoogle Scholar
Pinsonneault, M. H., Deliyannis, C. P. & Demarque, P. 1992, ApJS, 78, 179 Google Scholar
Pinsonnealt, M. H., Kawaler, S. D. & Demarque, P. 1990, ApJS, 74, 501 Google Scholar
Press, W.H. 1981, ApJ, 245, 286 CrossRefGoogle Scholar
Rebolo, R., Moloaro, P. & Beckman, J.E. 1988, A&A, 192, 192 Google Scholar
Rhodes, E.J. Jr., Kosovichev, A.G., Scherrer, P.H., Schou, J. & Reiter, J. 1997, Solar Physics, 175, 208 Google Scholar
Ryan, S.G., Beers, T.C., Deliyannis, C.P. & Thorburn, J.A. 1996, ApJ, 458, 543 Google Scholar
Schramm, D.N., Steigman, G. & Dearborn, D.S.P. 1990, ApJ, 359, L55 Google Scholar
Schwarzschild, M., Howard, R. & Härm, R. 1957, ApJ, 125, 233 Google Scholar
Soderblom, D.R., Jones, B.F., Balachandran, S., Stauffer, J.R., Duncan, D.K., Fedele, S.B. & Hudon, J.D. 1993, AJ, 106, 1059 Google Scholar
Smith, V.V., Lambert, D.L. & Nissen, P. 1993, ApJ, 408, 262 Google Scholar
Spite, F. & Spite, M. 1982, A&A, 115, 357 Google Scholar
Spite, M., Molaro, P., Francois, P. & Spite, F. 1993, A&A, 271, L1 Google Scholar
Spite, M., Maillard, J.P. & Spite, F. 1984, A&A, 141, 56 Google Scholar
Stephans, A., Boesgaard, A.M., King, J.R. & Deliyannis, C.P. 1997, ApJ, 491, 339 Google Scholar
Stuik, R., Bruls, J.H.M.J. & Rutten, R.J. 1997, A&A, 322, 911 Google Scholar
Sweet, P.A. 1950, MNRAS, 110, 548 Google Scholar
Swenson, F.J. & Faulkner, J. 1992, ApJ, 395, 654 Google Scholar
Thompson, M.J., et al. 1996, Science, 272, 1300 Google Scholar
Thorburn, J.A. 1992, ApJ, 399, L83 Google Scholar
Thorburn, J.A. 1994, ApJ, 421, 318 Google Scholar
Thorburn, J.A. & Beers, T.C. 1993, ApJ, 404, L13 Google Scholar
Thorburn, J.A., Hobbs, L.M., Deliyannis, C.P. & Pinsonneault, M.H. 1993, ApJ, 415, 150 Google Scholar
Vauclair, S. 1988, ApJ, 335, 971 Google Scholar
Vauclair, S. & Charbonnel, C. 1995, A&A, 295, 715 Google Scholar
von Zeipel, H. 1924, MNRAS, 84, 665 Google Scholar
Zahn, J.-P. 1991, A&A, 265, 115 Google Scholar
Zahn, J.-P. 1994, A&A, 288, 829 Google Scholar
Zahn, J.-P., Talon, S. & Matias, J. 1997, A&A, 322, 320 Google Scholar