Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-29T01:27:55.301Z Has data issue: false hasContentIssue false

High Dynamic Range and the Search for Planets

Published online by Cambridge University Press:  26 May 2016

A. T. Tokunaga
Affiliation:
Institute for Astronomy, Univ. of Hawaii, 2680 Woodlawn Dr., Honolulu, HI 96822
C. Ftaclas
Affiliation:
Institute for Astronomy, Univ. of Hawaii, 2680 Woodlawn Dr., Honolulu, HI 96822
J. R. Kuhn
Affiliation:
Institute for Astronomy, Univ. of Hawaii, 2680 Woodlawn Dr., Honolulu, HI 96822
P. Baudoz
Affiliation:
Institute for Astronomy, Univ. of Hawaii, 2680 Woodlawn Dr., Honolulu, HI 96822

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

General arguments for optimized coronagraphy in the search for planets are presented. First, off-axis telescopes provide the best telescopic platforms for use with coronagraphy, and telescope fabrication technology now allows the fabrication of such telescopes with diameters of up to 6.5 m. We show that in certain circumstances a smaller telescope with an off-axis primary has a signal-to-noise advantage compared with larger Cassegrain telescopes. Second, to fully exploit the advantages of the coronagraph for suppressing stray light, it is necessary to use a high Strehl ratio adaptive optics system. This can be best achieved initially with modest aperture telescopes of 3–4 m in diameter. Third, application of simultaneous differential imaging and simultaneous polarimetric techniques are required to reach the photon-limit of coronagraphic imaging. These three developments, if pursued together, will yield significant improvements in the search for planets.

Type
Part 9. Future Prospects
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

Ftaclas, C. 1994, in Infrared Tools for Solar Astrophysics, What's Next?, ed. Kuhn, J. R. & Penn, M. J. (Singapore: World Scientific)Google Scholar
Ftaclas, C., Martín, E. L., & Toomey, D. 2003, this volume Google Scholar
Jewitt, D. C., & Luu, J. X. 1993, Nature, 362, 730 Google Scholar
Kuhn, J. R., & Hawley, S. L. 1999, PASP, 111, 601 CrossRefGoogle Scholar
Kuhn, J. R., Potter, D., & Parise, B. 2001a, ApJ, 553, L189 Google Scholar
Kuhn, J. R., Moretto, G., Racine, R., Roddier, F., & Coulter, R. 2001b, PASP, 113, 1486 Google Scholar
Lai, O. 2001, in Beyond Conventional Adaptive Optics, ed. Ragazzoni, R., Hubin, N., & Esposito, S. (Venice: ESO)Google Scholar
Marois, C., Doyon, R., & Nadeau, D. 2003, this volume Google Scholar
Mayor, M., & Queloz, D. 1995, Nature, 378, 355 Google Scholar
Nakajima, T., Oppenheimer, B. R., Kulkarni, S. R., Golimowski, D. A., Matthews, K., & Durrance, S. T. 1995, Nature, 378, 463 Google Scholar
Oppenheimer, B. R., Sivaramakrishnan, , & Makidon, R. B. 2002, in The Future of Small Telescopes, ed. Oswalt, T. (Dordrecht: Kluwer)Google Scholar
Oppenheimer, B. R., et al. 2003, this volume Google Scholar
Rebolo, R., Zapatero-Osorio, M. R., & Martín, E. L. 1995, Nature, 377, 129 Google Scholar
Schroeder, D. 1987, Astronomical Optics (San Diego: Academic Press), 185 Google Scholar
Sivaramakrishnan, A., Koresko, C. D., Makidon, R. B., Berkefeld, T., & Kuchner, M. J. 2001, ApJ, 552, 397 Google Scholar