Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-jxkh9 Total loading time: 0.372 Render date: 2023-01-30T09:49:57.914Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Filament Fragmentation

Published online by Cambridge University Press:  13 May 2016

Shu-ichiro Inutsuka
Affiliation:
Division of Theoretical Astrophysics, National Astronomical Observatory, Mitaka, Tokyo 181–8588, Japan
Toru Tsuribe
Affiliation:
Department of Physics, Kyoto University Kitashirakawa, Sakyo-ku, Kyoto, 606–8502, Japan

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The formation and evolution processes of magnetized filamentary molecular clouds are investigated in detail by linear stability analyses and non-linear numerical calculations. A one-dimensionally compressed self-gravitating sheet-like cloud breaks up into filamentary clouds. The directions of the longitudinal axes of the resulting filaments are perpendicular to the directions of magnetic field lines unless the column density of the sheet is very small. These magnetized filaments tend to collapse radially without characteristic density, length, and mass scale for the further fragmentation during the isothermal phase. The characteristic minimum mass for the final fragmentation is obtained by the investigation of thermal processes. The essential points of the above processes are analytically explained in terms of the basic physics. A theory for the expected mass function of dense molecular cloud cores is obtained. The expected mean surface density of companions of dense cores is also discussed.

Type
IX. Theoretical Context - Detailed Calculations
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

Bate, M. R., Clarke, C. J., & McCaughrean, M. J. 1998, MNRAS, 297, 1163.CrossRefGoogle Scholar
Bond, J. R., Cole, S., Efstathiou, G., & Kaiser, N. 1991, ApJ, 379, 440.CrossRefGoogle Scholar
Boss, A. P. 1988, ApJ, 331, 370.CrossRefGoogle Scholar
Boss, A. P., Fisher, R. T., Klein, R. I., & McKee, C. F. 2000, ApJ, 528, 325.CrossRefGoogle Scholar
Bodenheimer, P., Burkert, A., Klein, R. I., & Boss, A. P. 2000, Protostars and Planets IV, ed. Mannings, V., Boss, A. P. & Russell, S. S. (Tucson: University of Arizona Press), 675.Google Scholar
Elmegreen, B. G., & Elmegreen, D. M. 1978, ApJ, 220, 1051.CrossRefGoogle Scholar
Gradwin, P. P., Kitsionas, S., Boffin, H. M. J., & Whitworth, A. P. 1999, MNRAS, 302, 305.CrossRefGoogle Scholar
Heiles, C., Goodman, A., McKee, C., Zweibel, E. G. 1993, Protostars and Planets III, ed. Levy, E. H. & Linine, J. I., (Tucson: University of Arizona Press), 279.Google Scholar
Inutsuka, S., & Miyama, S. M. 1992, ApJ, 388, 392.CrossRefGoogle Scholar
Inutsuka, S., & Miyama, S. M. 1997, ApJ, 480, 681.CrossRefGoogle Scholar
Inutsuka, S. 2000, in preparation.Google Scholar
Larson, R. B. 1995, MNRAS, 272, 213.CrossRefGoogle Scholar
Low, C. & Lynden-Bell, D. 1976, MNRAS, 176, 367.CrossRefGoogle Scholar
Lubow, S. H., & Pringle, J. E. 1993, MNRAS, 263,701.CrossRefGoogle Scholar
Masunaga, H., Miyama, S.M., & Inutsuka, S. 1998, ApJ, 495, 346.CrossRefGoogle Scholar
Masunaga, H., & Inutsuka, S. 1999, ApJ, 510, 822.CrossRefGoogle Scholar
Masunaga, H., & Inutsuka, S. 2000, ApJ, 531, 350.CrossRefGoogle Scholar
Miyama, S. M., Narita, S., & Hayashi, C. 1987a, Prog. Theor. Phys., 78, 1051.CrossRefGoogle Scholar
Miyama, S. M., Narita, S., & Hayashi, C. 1987b, Prog. Theor. Phys., 78, 1273.CrossRefGoogle Scholar
Motte, F., Andre, P., & Neri, R. 1998, A&A, 336, 150.Google Scholar
Nagai, T., Inutsuka, S., & Miyama, S. M. 1998, ApJ, 506, 306.CrossRefGoogle Scholar
Nagasawa, M. 1987, Prog. Theor. Phys., 77, 635.CrossRefGoogle Scholar
Nakajima, Y., Tachihara, K., Hanawa, T., & Nakano, M. 1998, ApJ, 497, 721.CrossRefGoogle Scholar
Peacock, J. A., & Heavens, A. F. 1990 MNRAS, 243, 133.CrossRefGoogle Scholar
Press, W. H., & Schechter, P. 1974, ApJ, 187, 425.CrossRefGoogle Scholar
Rees, M. J. 1976, MNRAS, 176, 483.CrossRefGoogle Scholar
Onishi, T., Mizuno, A., Kawamura, A., & Fukui, Y. 1999 Star Formation 1999, ed. Nakamoto, T., (NROJ), 153.Google Scholar
Oganesyan, R. S. 1960, AZh, 37, 665 (Soviet Ast., 4. 634).Google Scholar
Ostriker, J. 1964, ApJ, 140, 1056.CrossRefGoogle Scholar
Silk, J. 1977, ApJ, 214, 152.CrossRefGoogle Scholar
Simon, M. 1997, ApJ, 482, L81.CrossRefGoogle Scholar
Testi, L., & Sargent, A. I. 1998, ApJ, 508, L91.CrossRefGoogle Scholar
Truelove, J. K., Klein, R. I., McKee, C. F., Holliman, J. H. II, Howell, L. H., & Greenough, J. A. 1997, ApJ, 489, L179.CrossRefGoogle Scholar
Tsuribe, T., & Inutsuka, S. 1999a, ApJ, 523, L155.CrossRefGoogle Scholar
Tsuribe, T., & Inutsuka, S. 1999b, ApJ, 526, 307.CrossRefGoogle Scholar
Tsuribe, T., & Inutsuka, S. 2000, in preparation.Google Scholar
Yano, T., Nagashima, M., & Gouda, N. 1996, ApJ, 466, 1.CrossRefGoogle Scholar
You have Access
5
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Filament Fragmentation
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Filament Fragmentation
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Filament Fragmentation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *