Hostname: page-component-788cddb947-tr9hg Total loading time: 0 Render date: 2024-10-19T02:47:12.908Z Has data issue: false hasContentIssue false

Extragalactic Supernovae and the Starformation Rate

Published online by Cambridge University Press:  13 May 2016

Alan Pedlar*
Affiliation:
Jodrell Bank Observatory, University of Manchester, Nr, Macclesfield, UK, SK10 5NE

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The advantages of studying samples of supernova remnants in external galaxies will be discussed. A summary of how the remnants can be used to infer starformation rates in starburst galaxies will be given, as will the use of these remnants to probe the interstellar medium of these galaxies on parsec scales. Widefield EVN and Global VLBI measurements of remnants in the nearby starburst in M82 will be described in detail, and recent expansion velocity measurements described. The similarity between the strongest compact source in M82 and the objects recently discovered in Arp220 will be noted. The sensitivity limitations of this work will be discussed and the prospects for studies of more distant objects using Square Kilometer Array considered.

Type
Supernovae, Pulsars, and the Interstellar Medium
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

Braun, R. & Walterbos, R.A.M. 1993 A&AS, 98 327.Google Scholar
Carilli, C.L., & Taylor, G.B. 2000 ApJ, 532, L95.CrossRefGoogle Scholar
Condon, J.J. 1992 ARA&A, 30, 575.Google Scholar
Cram, L.E. et al 1998 ApJ, 507, 155.CrossRefGoogle Scholar
Duric, N. et al 1993 A&AS, 99, 217.Google Scholar
Duric, N. & Dittmar, N.R. 1988 ApJ, 332, L67.CrossRefGoogle Scholar
Green, D.A. 1984 MNRAS, 209, 449.CrossRefGoogle Scholar
Helou, G. et al 1985 ApJ, 298, 7.Google Scholar
Kennicutt, R.C. 1983 ApJ, 272 54.CrossRefGoogle Scholar
Kronberg, P.P. & Wilkinson, P.N. 1975 ApJ, 200, 430.CrossRefGoogle Scholar
Kronberg, P.P., Biermann, P., & Schab, F.J. 1985 ApJ, 291, 693.CrossRefGoogle Scholar
Kronberg, P.P. et al 2000 ApJ, 535, 706.CrossRefGoogle Scholar
Muxlow, T.W.B. et al 1994 MNRAS, 266, 455.CrossRefGoogle Scholar
McDonald, A. et al 2000 MNRAS (in press) .Google Scholar
Mills, B.Y. et al 1984 Aust. J. Phys., 37, 321.Google Scholar
Neff, S.G. & Ulvestad, J.S. 2000 AJ, 120, 670.Google Scholar
Noreau, L., & Kronberg, P.P. 1987 AJ, 93, L1045.CrossRefGoogle Scholar
Pedlar, A. et al 1999 MNRAS, 307, 761.CrossRefGoogle Scholar
Rieke, G.H. et al 1980 AJ, 238, 24.CrossRefGoogle Scholar
Smith, H. et al 1998 ApJ, 493, L17.CrossRefGoogle Scholar
Tarchi, A. et al 2000 A&A, 358, 95.Google Scholar
Unger, S.W. et al 1984 MNRAS, 211, 783.CrossRefGoogle Scholar
Ulvestad, J.S. & Antonucci, R.J. 1997 ApJ, 488, 621.CrossRefGoogle Scholar
Wills, K.A. et al 1997 MNRAS, 291, 517.CrossRefGoogle Scholar
Wills, K.A., Pedlar, A., & Muxlow, T.W.B. 1998 MNRAS, 298, 347.CrossRefGoogle Scholar
Wills, K.A. et al 2000 MNRAS, 316, 33.CrossRefGoogle Scholar