Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-26T13:58:31.633Z Has data issue: false hasContentIssue false

Extragalactic Background Light, MACHOs, and the Cosmic Stellar Baryon Budget

Published online by Cambridge University Press:  13 May 2016

Piero Madau
Affiliation:
Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA
Francesco Haardt
Affiliation:
Dipartimento di Scienze, Universitá dell'Insubria, via Lucini 3, Como, Italy
Lucia Pozzetti
Affiliation:
Osservatorio Astronomico di Bologna, Via Ranzani 1, 40127 Bologna, Italy

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The optical/far–IR extragalactic background light (EBL) from both resolved and unresolved extragalactic sources is an indicator of the total luminosity of cosmic structures, as the cumulative emission from young and evolved galactic systems, as well as from active galactic nuclei (AGNs), is recorded in this radiation. This is a brief review of some of the implications of the observed brightness of the night sky for the stellar mass density and average metallicity of the universe today, and of the possible contribution of MACHO progenitors and QSOs to the EBL. Assuming a Salpeter initial mass function with a cutoff below 0.6 M, a lower limit of Ωg+Sh2 > 0.0015 I60 can be derived to the visible (recycled gas + stars) mass density required to generate an EBL at a level of IEBL = 60 I60 nW m−2 sr−1. Our latest, ‘best–guess’ estimate is Ωg+sh2 ≈ 0.0023 I60, which implies a mean metallicity at the present–epoch of yZΩg+sb ≈ 0.2 Z. If massive dark halos around spiral galaxies are partially composed of faint, old white dwarfs, i.e., if a non–negligible fraction (~ a few percent) of the nucleosynthetic baryons is locked in the remnants (MACHOs) of intermediate–mass stars forming at very high redshifts, then the bright early phases of such halos should contribute significantly to the observed EBL. Assuming a standard black hole accretion model for quasar activity and using recent observations of the quasar population and new synthesis models for the cosmic X-ray background, we estimate a present mass density of QSO remnants of ρBH ≈ 3 x 105 M Mpc−3 for a 10% efficiency of accreted mass–to–radiation conversion. The quasar contribution to the brightness of the night sky is IQSO ≈ 2 nW m−2 sr−1.

Type
Research Article
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

Alcock, C., et al. 2000, ApJ, 542, 281 Google Scholar
Bernstein, R. A., Freedman, W. L., & Madore, B. F. 2000, submitted.Google Scholar
Bruzual, A. C., & Chariot, S. 1993, ApJ, 405, 538 Google Scholar
Buries, S., & Tytler, D. 1998, ApJ, 499, 699 Google Scholar
Chabrier, G. 1999, ApJ, 513, L103 Google Scholar
Chabrier, G., Segretain, L., & Mera, D. 1996, ApJ, 468, L21 Google Scholar
Chariot, S., & Silk, J. 1995, ApJ, 445, 124 Google Scholar
Chokshi, A., & Turner, E. L. 1992, MNRAS, 259, 421 Google Scholar
Comastri, A., et al. 1995, A&A, 296, 1 Google Scholar
Cowie, L. L., Songaila, A., & Barger, A. J. 1999, AJ, 118, 603 Google Scholar
Dwek, E., & Arendt, R. G. 1998, ApJ, 508, L9 CrossRefGoogle Scholar
Dwek, E., et al. 1998, ApJ, 508, 106 CrossRefGoogle Scholar
Elbaz, D., et al. 1999, A&A, 351, L37 Google Scholar
Ellis, R. S., Colless, M., Broadhurst, T., Heyl, J., & Glazebrook, K. 1996, MNRAS, 280, 235 Google Scholar
Elmegreen, B. G. 1998, in Unsolved Problems in Stellar Evolution, ed. Livio, M. (Cambridge: Cambridge University Press), in press (astro–ph/9811289).Google Scholar
Fabian, A. C., & Iwasawa, K. 1999, MNRAS, 303, L34 Google Scholar
Ferrarese, L., & Merritt, D. 2000, ApJ, 539, L9 Google Scholar
Fields, B. D., Freese, K., & Graff, D. S. 1998, NewA, 3, 347 CrossRefGoogle Scholar
Finkbeiner, D. P., Davis, M., & Schlegel, D. J. 2000, ApJ, 544, 81 CrossRefGoogle Scholar
Fixsen, D. J., et al. 1998, ApJ, 508, 123 Google Scholar
Fukugita, M., Hogan, C. J., & Peebles, P. J. E. 1998, ApJ, 503, 518 Google Scholar
Gardner, J. P., Brown, T. M., & Ferguson, H. C. 2000, ApJ, 542, L79 Google Scholar
Gebhardt, K., et al. 2000, ApJ, 539, L13 Google Scholar
Gibson, B., & Mould, J. 1997, ApJ, 482, 98 Google Scholar
Gorjian, V., Wright, E. L., & Chary, R. R. 2000, ApJ, 536, 500 Google Scholar
Gould, A., Bahcall, J. N., & Flynn, C. 1996, ApJ, 465, 759 (GBF).Google Scholar
Gould, A., Flynn, C., & Bahcall, J. N. 1998, ApJ, 503, 798 Google Scholar
Haardt, F., & Madau, P. 1996, ApJ, 461, 20 Google Scholar
Haardt, F., & Madau, P. 2000, in preparation.Google Scholar
Harwit, M. 1999, ApJ, 510, L83 Google Scholar
Hauser, M. G., et al. 1998, ApJ, 508, 25 Google Scholar
Ibata, R., Irwin, M., Bienaymé, O., Scholz, R., & Guibert, J. 2000, ApJ, 532, L41 Google Scholar
Lagache, G., Abergel, A., Boulanger, F., Desert, F. X., & Puget, J.-L. 1999, A&A, 344, 322 Google Scholar
Lasserre, T., et al. 2000, A&A, 355, L39 Google Scholar
Lilly, S. J., Le Févre, O., Hammer, F., & Crampton, D., 1996, ApJ, 460, L1 Google Scholar
Madau, P., Ghisellini, G., & Fabian, A. C. 1994, MNRAS, 270, L17 Google Scholar
Madau, P., & Pozzetti, L. 2000, MNRAS, 312, L9 (MP).CrossRefGoogle Scholar
Madau, P., Pozzetti, L., & Dickinson, M. 1998, ApJ, 498, 106 Google Scholar
Magorrian, G., et al. 1998, AJ, 115, 2285 Google Scholar
Massey, P. 1998, in The Stellar Initial Mass Function, ed. Gilmore, G. & Howell, D. (San Francisco: ASP), 17 Google Scholar
Merritt, D., & Ferrarese, L. 2000, preprint (astro-ph/0009076).Google Scholar
Paresce, F., & De Marchi, G. 2000, ApJ, 534, 870 Google Scholar
Renzini, A. 1997, ApJ, 488, 35 Google Scholar
Richstone, D., et al. 1998, Nature, 395, 14 Google Scholar
Small, T. A., & Blandford, R. D. 1992, MNRAS, 259, 725 Google Scholar
Smecker, T. A., & Wyse, R. 1991, ApJ, 372, 448 Google Scholar
Soltan, A. 1982, MNRAS, 200, 115 Google Scholar
Steidel, C. C., Adelberger, K. L., Giavalisco, M., Dickinson, M., & Pettini, M. 1999, ApJ, 519, 1 Google Scholar
Treyer, M. A., Ellis, R. S., Millard, B., Donas, J., & Bridges, T. J. 1998, MNRAS, 300, 303 Google Scholar
Tsujimoto, T., Nomoto, K., Yoshii, Y., Hashimoto, M., Yanagida, S., & Thielemann, F.-K. 1995, MNRAS, 277, 945 Google Scholar
Weidemann, V. 1987, A&A, 188, 74 Google Scholar
Zoccali, M., et al. 2000, ApJ, 530, 418 Google Scholar