Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-25T06:17:10.978Z Has data issue: false hasContentIssue false

Damped Lyman-α Absorbers in Cosmological SPH Simulations: the “Metallicity Problem”

Published online by Cambridge University Press:  23 September 2016

Kentaro Nagamine
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, U.S.A.
Volker Springel
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, 85740 Garching bei München, Germany
Lars Hernquist
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the distribution of star formation rate (SFR) and metallicity of damped Lyman-α absorbers (DLAs) using cosmological smoothed particle hydrodynamics (SPH) simulations of the Λ cold dark matter (CDM) model. Our simulations include a phenomenological model for feedback by galactic winds which allows us to examine the effect of galactic outflows on the distribution of SFR and metallicity of DLAs. For models with strong galactic winds, we obtain good agreement with recent observations with respect to total neutral hydrogen mass density, NHI column-density distribution, abundance of DLAs, and for the distribution of SFR in DLAs. However, we also find that the median metallicity of simulated DLAs is higher than the values typically observed by nearly an order of magnitude. This discrepancy with observations could be due to shortcomings in the treatment of the supernova feedback or the multiphase structure of the gas in our current simulations. Recent observations by Wolfe et al. (2003a,b) seem to point to the same problem; i.e. the observed DLA metallicities are much lower than those expected from the (either observed or simulated) DLA star formation rates, a puzzle that has been known as the “missing metals”-problem for the globally averaged quantities.

Type
Session V: Intergalactic Medium
Copyright
Copyright © Astronomical Society of the Pacific 2005 

References

Becker, R. H., et al. 2001, AJ, 122, 2850 Google Scholar
Boissé, P., Le Brun, V., Bergeron, J., & Deharveng, J. M. 1998, A&A, 333, 841 Google Scholar
Bromm, V., Yoshida, N., & Hernquist, L. 2003, ApJ, 596, 135 Google Scholar
Ellison, S. L., et al. 2001, A&A, 379, 393 Google Scholar
Kennicutt, R. C. Jr. 1998, ARA&A, 36, 189 Google Scholar
Mac Low, M. M., & Ferrara, A. 1999, ApJ, 513, 142 Google Scholar
Nagamine, K., Springel, V., & Hernquist, L. 2004a, MNRAS, 348, 421 Google Scholar
Nagamine, K., Springel, V., & Hernquist, L. 2004b, MNRAS, 348, 435 Google Scholar
Nagamine, K., Springel, V., Hernquist, L., & Machacek, M. 2004c, MNRAS, 350, 385 Google Scholar
Pagel, L. 2002, in ASP Conf. Ser. Vol. 253, Chemical Enrichment of Intracluster and Intergalactic Medium, ed. Fusco-Femiano, R. & Matteucci, F. (San Francisco: ASP), 489 Google Scholar
Pettini, M. 2004, in Cosmochemistry: The Melting Pot of the Elements, ed. Esteban, C., Garcia López, R. J., Herrero, A., & Sánchez, F. (New York: Cambridge University Press), Ch 7 (astro-ph/0303272) Google Scholar
Pettini, M., Ellison, S. L., Steidel, C. C., & Bowen, D. V. 1999, ApJ, 510, 576 Google Scholar
Prochaska, J. X., & Wolfe, A. M. 2000, ApJ, 533, L5 CrossRefGoogle Scholar
Prochaska, J. X., & Wolfe, A. M. 2002, ApJ, 566, 68 Google Scholar
Schaye, J. 2001, ApJ, 562, L95 Google Scholar
Springel, V., & Hernquist, L. 2002, MNRAS, 333, 649 Google Scholar
Springel, V., & Hernquist, L. 2003a, MNRAS, 339, 289 Google Scholar
Springel, V., & Hernquist, L. 2003b, MNRAS, 339, 312 Google Scholar
Storrie-Lombardi, L. J., & Wolfe, A. M. 2000, ApJ, 543, 552 Google Scholar
Theuns, T., et al. 2002, ApJ, 578, L5 Google Scholar
Wolfe, A. M., Prochaska, J. X., & Gawiser, E. 2003a, ApJ, 593, 215 Google Scholar
Wolfe, A. M., Gawiser, E., & Prochaska, J. X. 2003b, ApJ, 593, 235 Google Scholar