Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-19T04:39:54.807Z Has data issue: false hasContentIssue false

A Critical Assessment of the PAH Hypothesis

Published online by Cambridge University Press:  23 September 2016

B. D. Donn
Affiliation:
Code 690, Laboratory for Extraterrestrial Physics, NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771
J. E. Allen
Affiliation:
Code 691, Astrochemistry Branch, NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771
R. K. Khanna
Affiliation:
Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The proposal that polycyclic aromatic hydrocarbons (PAHs) are the source of the unidentified infrared bands has several serious deficiencies that have not been discussed or satisfactorily treated: (1) no collection of neutral PAHs has been found which matches the observed wavelengths; (2) ion or dehydrogenated molecules have been predicted to be the dominant species in some regions, but no infrared spectra of either species have been obtained; (3) the restriction to small grains is based on grain temperatures ∼ 1000-1500 K which in turn followed from the infrared continuum color temperature – there is now a question whether that is thermal emission; if it is, the source cannot be molecules; (4) recent observations of the 12/100 μm flux ratio as a function of stellar temperature do not conform to predictions of the PAH hypotheses; (5) the photon excitation mechanism for infrared emission by neutral molecules should produce strong visible-ultraviolet fluorescence which is not observed – ions may not do this, but their infrared spectra are not known. There does not seem to be a ready explanation for these problems with the PAH hypotheses. Until definitive experimental study and analysis yielding unambiguous results have been carried out for PAHs, hydrogenated amorphous carbon or other forms of carbonaceous material, it is premature to assume any type of grain is the source of the infrared bands.

Type
Section II: The Overidentified Infrared Emission Features
Copyright
Copyright © Kluwer 1989 

References

Aitken, D. K. 1981, in IAU Symposium, 96, Infrared Astronomy, eds. Wynn-Williams, C. G. and Cruickshank, D. P., (Boston: Reidel), p. 207.Google Scholar
Allamandola, L. J., Tielens, A. G. G. M. and Barker, J. R. 1985, Ap. J. (Letters), 290, L25.CrossRefGoogle Scholar
Allamandola, L. J., Tielens, A. G. G. M. and Barker, J. R. 1987a, in Polycyclic Aromatic Hydrocarbons and Astrophysics, eds. Léger, A., d'Hendecourt, L. B., and Boccara, N., (Boston: Reidel), p. 255.Google Scholar
Allamandola, L. J., Tielens, A. G. G. M. and Barker, J. R. 1987b, in Physical Processes in Interstellar Clouds, eds. Morfell, G. E. and Scholer, M., (Boston: Reidel), p. 305.CrossRefGoogle Scholar
Barker, J. R., Allamandola, L. J. and Tielens, A. G. G. M. 1987, Ap. J. (Letters), 315, L61.CrossRefGoogle Scholar
Borghesi, A., Bussoletti, E. and Colangeli, L. 1987, Ap. J., 314, 422.Google Scholar
Bouzou, C., Jouvet, C, LeBlond, J. B., Miller, Ph. and Tramer, A. 1983, Chem. Phys. Letters, 97, 2.Google Scholar
Donn, B. 1968, Ap. J., 152, L129.Google Scholar
Donn, B. and Krishna Swamy, K. S. 1969, Physica, 41, 133.Google Scholar
Duley, W. and Williams, D. A. 1981, M. N. R. A. S., 196, 269.CrossRefGoogle Scholar
Duley, W. and Williams, D. A. 1989, in Interstellar Dust Contributed Papers, eds. Tielens, A. G. G. M. and Allamandola, L. J., NASA CP-3036.Google Scholar
Felker, P. M. and Zewail, A. H. 1984, Chem. Phys. Letters, 108, 303.Google Scholar
Gillett, F. C., Forrest, W. J. and Merrill, K. M. 1973, Ap. J., 183, 87.Google Scholar
d'Hendecourt, L. B., Léger, A., Olofsson, G. and Schmidt, W. 1986, Astr. Ap., 170, 91.Google Scholar
Leach, S. 1987, in Polycyclic Aromatic Hydrocarbons and Astrophysics, eds. Léger, A., d'Hendecourt, L. and Boccara, N. (Boston: Reidel), p. 99.Google Scholar
Léger, A. and Puget, J. L. 1984, Astr. Ap., 137, L5.Google Scholar
Léger, A. and d'Hendecourt, L. B. 1987, in Polycyclic Aromatic Hydrocarbons and Astrophysics, eds. Léger, A., d'Hendecourt, L. and Boccara, N. (Boston: Reidel), p. 223.Google Scholar
Sakata, A., Wada, S, Tanabe, T. and Onaka, T. 1984, Ap. J. (Letters), 287, L51.Google Scholar
Sakata, A., Wada, S., Onaka, T. and Tokunaga, A. T. 1987, Ap. J. (Letters), 320, L63.Google Scholar
Sellgren, K. 1984, Ap. J., 277, 623.Google Scholar
Sellgren, K., Werner, M. W. and Dinerstein, H. L. 1983, Ap. J., 271, L13.Google Scholar
Sellgren, K., Allamandola, L. J., Bregman, J. D., Werner, M. W. and Wooden, D. H. 1986, Ap. J., 299, 416.CrossRefGoogle Scholar
Sellgren, K., Castelaz, M. W., Werner, M. W. and Lunan, L. 1988, in Comets and Cosmology, ed. Lawrence, A., (New York: Springer Verlag).Google Scholar
Sellgren, K. 1989, in IAU Symposium 135, Interstellar Dust, eds. Allamandola, L. J. and Tielens, A. G. G. M., (Dordrecht: Kluwer), p. 103.Google Scholar
Witt, A. N. and Schild, R. E. 1988, Ap. J., 325, 837.CrossRefGoogle Scholar