Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T14:44:40.268Z Has data issue: false hasContentIssue false

Correlations of Spectral Accretion Signatures in Young Binaries

Published online by Cambridge University Press:  13 May 2016

Lisa Prato
Affiliation:
UCLA, Dept. of Physics & Astronomy, Math Sciences 8371, Los Angeles, CA 90095–1562, USA
Jean-Louis Monin
Affiliation:
Observatoire de Grenoble, Laboratoire d'Astrophysique, BP 53, F-38041 Grenoble cedex, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review correlations of spectral accretion diagnostics in young binary star systems. Hydrogen emission lines at visual (Hα) and near-infrared (Brγ) wavelengths indicate the presence of active accretion flows onto young stars. We examine the simultaneity of this process in both components of close binaries (separations 100–1500 AU) and find that active accretion is not a random process in these systems: the two stars are typically both active or both inactive. Only 19% of our sample consists of mixed pairs in which just one component displays evidence of accretion, usually the primary. In systems with two active stars, the equivalent width and in particular the line flux of the primary star is generally dominant, indicating stronger accretion activity. We discuss accretion and disk dissipation processes in close binaries and propose that a circumbinary envelope model accounts for the correlated evolution of circumstellar disks around young binaries.

Type
VIII. Environments of Young Binaries - Indirect Observations
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

Armitage, P. J., Clarke, C. J., & Tout, C. A. 1999, MNRAS, 304, 425.Google Scholar
Basri, G., & Bertout, C. 1993, Protostars and Planets III, 543.Google Scholar
Bate, M. 2000, in press.Google Scholar
Brandner, W., & Zinnecker, H. 1997, A&A, 321, 220.Google Scholar
Calvet, N., Hartmann, L., Kenyon, S. J., & Whitney, B. A. 1994, ApJ, 434, 330.Google Scholar
Duchêne, G., Monin, J.-L., Bouvier, J., & Ménard, F. 1999, A&A, 351, 954 (D99).Google Scholar
Ghez, A. M., Neugebauer, G., & Matthews, K. 1993, AJ, 106, 2005.Google Scholar
Edwards, S., Ray, T., & Mundt, R. 1993, Protostars and Planets III, 567 (E93).Google Scholar
Hartigan, P., Hartmann, L., Kenyon, S. J., Strom, S. E., & Skrutskie, M. F. 1990, ApJ, 354, L25.Google Scholar
Hartigan, P., Strom, K. M., & Strom, S. E. 1994, ApJ, 427, 961 (H94).Google Scholar
Hartmann, L., Hewett, R., & Calvet, N. 1994, ApJ, 426, 669.CrossRefGoogle Scholar
Herbig, G. H., & Bell, K. R. 1988, Lick Observatory Bulletin No. 1111.Google Scholar
Jensen, E. L. N., Donar, A. X., & Mathieu, R. D. 2000, in Birth and Evolution of Binary Stars, poster proceedings of IAU Symp. No. 200, ed. Reipurth, B. & Zinnecker, H., 85.Google Scholar
Kenyon, S. J., & Hartmann, L. 1995, ApJS, 101, 117.CrossRefGoogle Scholar
Kenyon, S. J., Yi, I., & Hartmann, L. 1996, ApJ, 462, 439.Google Scholar
Leinert, Ch., Zinnecker, H., Weitzel, N., Christou, J., Ridgway, S. T., Jameson, R., Haas, M., & Lenzen, R. 1993, A&A, 278, 129.Google Scholar
Martín, E. L. 1998, AJ, 115, 351.Google Scholar
Monin, J.-L., Menard, F., & Duchene, G. 1998, A&A, 339, 113 (M98).Google Scholar
Muzerolle, J., Hartmann, L., & Calvet, N. 1998, AJ, 116, 2965.Google Scholar
Prato, L., & Simon, M. 1997, ApJ, 474, 455 (PS97).Google Scholar
Prato, L. A. 1998, Ph.D. Thesis, SUNY Stony Brook.Google Scholar
Prato, L., Greene, T. G., Simon, M., & Beck, T. L. 2000, in preparation.Google Scholar
Shu, F., Najita, J., Ostriker, E., Wilkin, F., Ruden, S., & Lizano, S. 1994, ApJ, 429, 781.Google Scholar
Simon, M., & Prato, L. 1995, ApJ, 450, 824.Google Scholar
Simon, M., Ghez, A. M., Leinert, Ch., Cassar, L., Chen, W. P., Howell, R. R., Jameson, R. F., Matthews, K., Neugebauer, G., & Richichi, A. 1995, ApJ, 443, 625.Google Scholar
Stapelfeldt, K., & Ménard, F. 2000, this volume.Google Scholar
Strom, K. M., Strom, S. E., Edwards, S., Cabrit, S., & Skrutskie, M. F. 1989, AJ, 97, 1451.Google Scholar
Walter, F. M. 1999, in Solar and Stellar Activity: Similarities and Differences, ASP Conference Series 158, ed. Butler, C. J. & Doyle, J. G., 87.Google Scholar