Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-20T00:31:25.847Z Has data issue: false hasContentIssue false

The Classification of T Dwarfs

Published online by Cambridge University Press:  26 May 2016

Adam J. Burgasser
Affiliation:
Hubble Fellow; UCLA Dept. Physics & Astronomy, 8965 Math Sciences Bldg., Los Angeles, CA 90095–1562; adam@astro.ucla.edu
Thomas R. Geballe
Affiliation:
Gemini Observatory, 670 North A'ohoku Place, Hilo, HI 96720
David A. Golimowski
Affiliation:
Dept. Physics & Astronomy, Johns Hopkins University, 3701 San Martin Drive, Baltimore, MD 21218
Sandy K. Leggett
Affiliation:
Joint Astronomy Centre, 660 North A'ohoku Place, Hilo, HI 96720
J. Davy Kirkpatrick
Affiliation:
Infrared Processing and Analysis Center, M/S 100–22, California Institute of Technology, Pasadena, CA 91125
Gillian R. Knapp
Affiliation:
Princeton University Observatory, Peyton Hall, Princeton, NJ 08544–1001
Xiaohui Fan
Affiliation:
Institute for Advanced Study, Olden Lane, Princeton, NJ 08540–0631

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The discovery of many cool brown dwarfs similar to Gliese 229B has led to the definition of a new spectral class, the T dwarfs, whose 1–2.5 μm spectra exhibit signatures of CH4 absorption. Two classification schemes have been proposed for these objects by Burgasser et al. and Geballe et al. We discuss and compare these schemes, and describe a joint classification scheme currently in development that closely follows the guidelines of the MK process. We also address future work toward establishing gravity classes, classifying at other wavelengths, and identifying those features that may signify the end of the T spectral class.

Type
Part 7. Atmospheres and Internal Structure
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

Burgasser, A. J. 2001, Ph.D. Thesis, California Institute of Technology Google Scholar
Burgasser, A. J., et al. 1999, ApJ, 522, L65 CrossRefGoogle Scholar
Burgasser, A. J., et al. 2000a, ApJ, 531, L57 CrossRefGoogle Scholar
Burgasser, A. J., et al. 2000b, AJ, 120, 1100 CrossRefGoogle Scholar
Burgasser, A. J., et al. 2002, ApJ, 564, 421 (B02) CrossRefGoogle Scholar
Burrows, A., Marley, M. S., & Sharp, C. M. 2000, ApJ, 531, 438 CrossRefGoogle Scholar
Burrows, A., & Sharp, C. M. 1999, ApJ, 512, 843 CrossRefGoogle Scholar
Burrows, A., et al. 2001, RvMP, 73, 719 Google Scholar
Chabrier, G. 2002, ApJ, 567, 304 CrossRefGoogle Scholar
Cuby, J. G., et al. 1999, A&A, 349, L41 Google Scholar
Geballe, T. R., et al. 2002, ApJ, 564, 466 (G02) CrossRefGoogle Scholar
Kirkpatrick, J. D., et al. 1999, ApJ, 519, 802 CrossRefGoogle Scholar
Leggett, S. K., et al. 2000, ApJ, 536, L35 CrossRefGoogle Scholar
Leggett, S. K., et al. 2002, MNRAS, 332, 78 CrossRefGoogle Scholar
Lodders, K. 1999, ApJ, 519, 793 CrossRefGoogle Scholar
Lucas, P. W., et al. 2001, MNRAS, 326, 695 CrossRefGoogle Scholar
Luhman, K. L., et al. 1998, ApJ, 493, 909 CrossRefGoogle Scholar
Martín, E. L., Rebolo, R., & Zapatero Osorio, M. R. 1996, ApJ, 469, 706 CrossRefGoogle Scholar
Morgan, W. W., Keenan, P. C., & Kellman, E. 1943, An Atlas of Stellar Spectra, with an Outline of Spectral Classification (Chicago: Univ. Chicago Press)Google Scholar
Nakajima, T., et al. 1995, Nature, 378, 463 CrossRefGoogle Scholar
Noll, K. S., et al. 2000, ApJ, 541, L75 CrossRefGoogle Scholar
Oppenheimer, B. R., et al. 1995, Science, 270, 1478 CrossRefGoogle Scholar
Oppenheimer, B. R., et al. 1998, ApJ, 502, 932 CrossRefGoogle Scholar
Reid, I. N., et al. 1999, ApJ, 521, 613 CrossRefGoogle Scholar
Strauss, M. A., et al. 1999, ApJ, 522, L61 CrossRefGoogle Scholar
Tsuji, T., Ohnaka, K., & Aoki, W. 1999, ApJ, 520, L119 CrossRefGoogle Scholar
Zapatero Osorio, M. R., et al. 2002, ApJ, in press (astro-ph/0206353) Google Scholar