Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-28T15:50:36.419Z Has data issue: false hasContentIssue false

Narrow-Band 1, 2, 3, 4, 8, 16, 24, 32, 48, 64, and 96 Cycles/360° Angular Frequency Filters

Published online by Cambridge University Press:  10 April 2014

Maria Lúcia De Bustamante Simas*
Affiliation:
Universidade Federal de Pernambuco (Brazil)
Natanael Antonio Dos Santos
Affiliation:
Universidade Federal da Paraíba (Brazil)
*
Correspondence concerning this article should be sent to Maria Lúcia De Bustamante Simas, LabVis-UFPE, Departamento de Psicologia, Universidade Federal de Pernambuco, Rua Acadêmico Hélio Ramos s/n, 9° Andar, Recife, 50670-901, PE, Brazil. E-mail: maria.simas@uol.com.br and mlbs@ufpe.br

Abstract

We measured human frequency response functions for eleven angular frequency filters using a forced-choice procedure in a supra-threshold summation paradigm. Each of the eleven functions of 17 experimental conditions was measured 4-9 times among 12 observers. Results show that, for the arbitrarily selected filter phases, maximum summation effect occurred at test frequency for all filters. These results lead to the conclusion that there are narrow-band angular frequency filters operating in human visual system mostly through summation surrounded by inhibition at the specific test frequency ranges. Our previous suggestion (Simas & Santos, 2002), arguing that summation for the higher angular frequency filters should occur if background angular frequency contrast were set to a maximum of 5 times the test frequency threshold, was supported.

Se midieron, en observadores humanos, las funciones de once filtros sintonizados a la frecuencia angular. Para ello se empleó un procedimiento de elección forzada en un paradigma de sumación supra-umbral. Cada una de las once funciones de las 17 condiciones experimentales se midió 4-9 veces para 12 observadores. Los resultados mostraron que, para todos los filtros y para las fases de filtro elegidas arbitrariamente, el efecto de sumación máxima ocurría a la frecuencia de prueba Este tipo de resultado lleva a concluir la existencia de filtros de frecuencia angular de banda estrecha que operan en el sistema visual humano, mayormente a través de sumación rodeada por inhibición en los rangos específicos de la frecuencia de prueba. Por otra parte, se obtuvo apoyo para nuestra anterior sugerencia (Simas y Santos, 2002) respecto a que la sumación para los filtros de frecuencia angular más alta debe ocurrir si el contraste de frecuencia angular de fondo se fija en un máximo de 5 veces el umbral de la frecuencia de prueba.

Type
Monographic Section: Spatial Vision and Visual Space
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achtman, R.L., Hess, R.F., & Wang, Y.Z. (2003), Sensitivity for global shape detection. Journal of Vision, 3, 616624.CrossRefGoogle ScholarPubMed
Bruce, C.J., Desimone, R., & Gross, C.G. (1981). Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. Journal of Neurophysiology, 46, 369384.CrossRefGoogle Scholar
Gallant, J.L., Braun, J., & Van Essen, D.C. (1993). Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. Science, 259, 100103.CrossRefGoogle ScholarPubMed
Gallant, J.L., Connor, C.E., Rakshit, S., Lewis, J.W., & Van Essen, D.C. (1996). Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. Journal of Neurophysiology, 76, 27182739.CrossRefGoogle ScholarPubMed
Hedgé, J., & Van Essen, D.C. (2000). Selectivity for complex shapes in primate visual area V2. Journal of Neuroscience, 20, 6166.Google Scholar
Hedgé, J., & Van Essen, D.C. (2003). Strategies of shape representation in macaque visual area V2. Visual Neuroscience, 20, 313328.Google Scholar
Kulikowski, J.J., & King-Smith, P.E. (1973). Spatial arrangement of line, edge and grating detectors revealed by sub-threshold summation. Vision Research, 13, 14551478.CrossRefGoogle Scholar
Mahon, L.E., & De Valois, R.L. (2001). Cartesian and non-Cartesian responses in LGN, V1 and V2 cells. Visual Neuroscience, 18, 973981.CrossRefGoogle ScholarPubMed
Simas, M.L.B. (1985). Linearity and domain invariance in the visual system. Doctoral thesis dissertation. Queen's University at Kingston, Ontario, Canada. University Microfilms International. Ann Arbor, Michigan, 1985. [Publication no. 86-17940.]Google Scholar
Simas, M.L.B., & Dodwell, P.C. (1990). Angular frequency filtering: A basis for pattern decomposition. Spatial Vision, 5, 5974.Google ScholarPubMed
Simas, M.L.B., Frutuoso, J.T., & Vieira, F.M. (1992). Inhibitory side bands in multiple angular frequency filters in the human visual system. Brazilian Journal of Medical and Biological Research, 25, 919923.Google Scholar
Simas, M.L.B., & Santos, N.A. dos (2002). Narrow-band 1, 2, 3, 4, 8, 16 and 24 cycles/360° angular frequency filters. Brazilian Journal of Medical and Biological Research, 35, 243253.CrossRefGoogle ScholarPubMed
Simas, M.L.B., Santos, N.A. dos, & Thiers, F.A. (1997). Contrast sensitivity to angular frequency stimuli is higher than that for sinewave gratings in respective middle range. Brazilian Journal of Medical and Biological Research, 30, 633636.CrossRefGoogle ScholarPubMed
Tanaka, K., & Saito, H-A. (1989). Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. Journal of Neurophysiology, 62, 626641.CrossRefGoogle ScholarPubMed
Tanaka, K., Fukada, Y., & Saito, H-A. (1989). Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the macaque monkey. Journal of Neurophysiology, 62, 642656.CrossRefGoogle ScholarPubMed
Tootell, R.B., Hadjikhani, N.K., Vanduffel, W., Liu, A.K., Mendola, J.D., Sereno, M.I., & Dale, A.M. (1998). Functional analysis of primary visual cortex (V1) in humans. Procedures of the National Academy of Science, USA, 95, 811817.CrossRefGoogle ScholarPubMed
Tyler, C.W. (1975). Spatial frequency filters in cat visual cortex? Vision Research, 15, 303304.CrossRefGoogle ScholarPubMed
Tyler, C.W. (1978). Selectivity for spatial frequency and bar width in cat visual cortex. Vision Research, 18, 121122.CrossRefGoogle ScholarPubMed
Wetherill, G.B., & Levitt, H. (1965). Sequential estimation of points on a psychometric function. British Journal of Mathematical and Statistical Psychology, 18, 110.CrossRefGoogle ScholarPubMed
Wilkinson, F., James, T.W., Wilson, H.R., Gati, J.S., Menon, R.S., & Goodale, M.A. (2000). An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings. Current Biology, 10, 14551458.CrossRefGoogle ScholarPubMed
Wilson, H.R., Wilkinson, F., & Asaad, W. (1997). Concentric orientation summation in human form vision. Vision Research, 37, 23252330.CrossRefGoogle ScholarPubMed