Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T04:10:11.465Z Has data issue: false hasContentIssue false

Interference in Visual Perception by Verbal and Spatial Cognitive Activity

Published online by Cambridge University Press:  10 January 2013

Elisa Pérez-Moreno*
Affiliation:
Universidad Complutense (Spain)
Ángela Conchillo
Affiliation:
Universidad Complutense (Spain)
Miguel Ángel Recarte
Affiliation:
Universidad Complutense (Spain)
*
Correspondence concerning this article should be addressed to Elisa Pérez Moreno. Dpto. Metodología de las Ciencias del Comportamiento. Facultad de Psicología. Universidad Complutense de Madrid. Campus de Somosaguas. 28223 Pozuelo de Alarcón – Madrid (Spain). Phone: +34-913943061. E-mail: elisaperez@psi.ucm.es

Abstract

In two experiments we tested the hypothesis that cognitive processing based on spatial imagery produces more deterioration of visual perception than cognitive processing based on verbal codes. So, we studied the effect on visual perception of two cognitive tasks, one of spatial imagery and the other a verbal task. In the first one, with 30 participants, we analyzed the mental load and ocular behaviors in both cognitive tasks. In the second experiment, with 29 participants, we studied the effect of both tasks on a visual search task, using a dual-task experimental paradigm. The verbal task presented higher mental load than the imagery task when both tasks were carried out with visual search task, and there was more deterioration in stimulus detection with the verbal task. We can conclude that: (1) cognitive tasks produce important deterioration in the capacities of visual search and identification of stimuli; (2) this deterioration has two components: (a) an inefficient search, associated with alterations of the gaze patterns while performing cognitive tasks, and (b) a general interference, nonspecific to spatial codes, in the process of identification of looked-at stimuli; (3) this cognitive interference is related to the mental load or effort required by the cognitive task.

Mediante dos experimentos hemos puesto a prueba la hipótesis de que el procesamiento cognitivo basado en imaginería espacial produce más deterioro en la percepción visual que el procesamiento basado en códigos verbales. Hemos estudiado el efecto de dos tareas cognitivas, una de imaginería espacial y otra verbal, sobre la percepción visual. En el primer experimento, con 30 participantes, analizamos la carga mental y el comportamiento ocular en ambas tareas cognitivas. En el segundo experimento, con 29 participantes, estudiamos el efecto de ambas tareas sobre una tarea de búsqueda visual, usando el paradigma experimental de doble tarea. La tarea verbal presentó mayor carga mental que la de imaginería espacial cuando ambas tareas se realizaron junto con la tarea de búsqueda visual y hubo un mayor deterioro en la detección de estímulos con la tarea verbal. Concluimos que (1) las tareas cognitivas producen un importante deterioro en capacidades de búsqueda visual e identificación de estímulos visuales; (2) este deterioro tiene dos componentes: (a) búsqueda ineficiente, asociada con alteraciones del patrón de mirada mientras se desarrollan tareas cognitivas, y (b) interferencia general, no específica de códigos espaciales, en el proceso de identificación de estímulos mirados; (3) esta interferencia cognitiva está relacionada con la carga mental o esfuerzo requerido por tareas cognitivas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91(2), 276292. doi:10.1037/0033-2909.91.2.276Google Scholar
Beck, D. M., & Lavie, N. (2005). Look here but ignore what you see: Effects of distractors at fixation. Journal of Experimental Psychology: Human Perception and Performance, 31(3), 592607. doi:10.1037/0096-1523.31.3.592Google Scholar
Cartwright-Finch, U., & Lavie, N. (2007). The role of perceptual load in inattentional blindness. Cognition, 102(3), 321340. doi:10.1016/j.cognition.2006.01.002CrossRefGoogle ScholarPubMed
De Fockert, J. W., Rees, G., Frith, C. D., & Lavie, N. (2001). The role of working memory in visual selective attention. Science, 291, 18031806. doi:10.1126/science.1056496Google Scholar
De Waard, D. (1996). The measurement of drivers' mental workload (Doctoral thesis). Retrieved from http://dissertations.ub.rug.nl/FILES/faculties/gmw/1996/d.de.waard/09_thesis.pdfGoogle Scholar
Farah, M. J. (1985). Psychophysical evidence for a shared representational medium for mental images and percepts. Journal of Experimental Psychology: General, 114(1), 91103. doi:10.1037/0096-3445.114.1.91CrossRefGoogle ScholarPubMed
Fougnie, D., & Marois, R. (2007). Executive working memory load induces inattentional blindness. Psychonomic Bulletin and Review, 14(1), 142147. doi:10.3758/BF03194041Google Scholar
Goldstein, E. B. (2002). Sensation and perception. Belmont, CA: Wadsworth.Google Scholar
Han, S. H., & Kim, M. S. (2004). Visual search does not remain efficient when executive working memory is working. Psychological Science, 15(9), 623628. doi:10.1111/j.0956-7976.2004.00730.xCrossRefGoogle ScholarPubMed
Hoeks, B., & Levelt, W. J. M. (1993). Pupillary dilation as a measure of attention: A quantitative system analysis. Behavior Research Methods, Instruments & Computers, 25, 1626. doi:10.3758/BF03204445Google Scholar
Iqbal, S. T., Zheng, X. S., & Bailey, B. P. (2004). Task- evoked pupillary response to mental workload in human- computer interaction. CHI'04 (pp. 14771480). New York, NY: AMS Press. Retrieved from http://portal.acm.org/citation.cfm?id=986094Google Scholar
Irwin, D. E., & Brockmole, J. R. (2000). Mental rotation is suppressed during saccadic eye movements. Psychonomic Bulletin and Review, 7(4), 654661.doi:10.3758/BF03213003CrossRefGoogle ScholarPubMed
Janisse, M. P. (1977). Pupillometry: The psychology of the pupillary response. New York, NY: Wiley.Google Scholar
Kahneman, D. (1973). Attention and effort. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Kosslyn, S. M. (1988). Aspects of a cognitive neuroscience of mental imagery. Science, 240, 1621–1621. doi:10.1126/science.3289115CrossRefGoogle ScholarPubMed
Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21(3), 451468. doi:10.1037/0096-1523.21.3.451Google Scholar
Lavie, N. (2005). Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9(2), 7582. doi:10.1016/j.tics.2004.12.004CrossRefGoogle ScholarPubMed
Lavie, N. (2006). The role of perceptual load in visual awareness. Brain Research, 1080(1), 91100. doi:10.1016/j.brainres.2005.10.023Google Scholar
Lavie, N., & De Fockert, J. W. (2005). The role of working memory in attentional capture. Psychonomic Bulletin and Review, 12(4), 669674. doi:10.3758/BF03196756Google Scholar
Lavie, N., Hirst, A., De Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133(3), 339354. doi:10.1037/0096-3445.133.3.339CrossRefGoogle ScholarPubMed
Leigh, R. J., & Zee, D. S. (1999). The neurology of eye movements. New York, NY: Oxford University Press.Google Scholar
Macdonald, J. S. P., & Lavie, N. (2008). Load induced blindness. Journal of Experimental Psychology: Human Perception and Performance, 34(5), 10781091. doi:10.1037/0096-1523. 34.5.1078Google Scholar
Mack, A., & Rock, I. (1998). Inattentional blindness. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Most, S. B., Scholl, B. J., Clifford, E. R., & Simons, D. J. (2005). What you see is what you set: Sustained inattentional blindness and the capture of awareness. Psychological Review, 112, 217242. doi:10.1037/0033-295X.112.1.217Google Scholar
Näätänen, R. (1992). Attention and brain function. Hillsdale, NJ: Erlbaum.Google Scholar
Noë, A., & O'Regan, J. K. (2000). Perception, attention, and the grand illusion. Psyche, 6(15), 615.Google Scholar
Oh, S. H., & Kim, M. S. (2004). The role of spatial working memory in visual search efficiency. Psychonomic Bulletin and Review, 11(2), 275281. doi:10.3758/BF03196570Google Scholar
Pappas, J. M., Fishel, S. R., Moss, J. D., Hicks, J. M., & Leech, T. D. (2005). An eye-tracking approach to inattentional blindness. In Proccedings of the Human Factors and Ergonomics Society (Vol. 49, pp. 16581662). Orlando, FL: HFES.Google Scholar
Posner, M. I., & Raichle, M. E. (1994). Images of mind. New York, NY: Scientific American Library.Google Scholar
Recarte, M. A., & Nunes, L. M. (2000). Effects of verbal and spatial-imagery tasks on eye fixations while driving. Journal of Experimental Psychology Applied, 6(1), 3143. doi:10.1037/1076-898X.6.1.31CrossRefGoogle ScholarPubMed
Recarte, M. A., & Nunes, L. M. (2002). Parpadeo durante la conducción: efectos de la carga mental y del tiempo conduciendo [Blink during driving: mental load and time driving effects]. Vigilia y sueño, 14, 161167.Google Scholar
Recarte, M. A., & Nunes, L. M. (2003). Mental workload while driving: Effects on visual search, discrimination, and decision making. Journal of Experimental Psychology Applied, 9(2), 119133. doi:10.1037/1076-898X.9.2.119Google Scholar
Recarte, M. A., Pérez, E., Conchillo, A., & Nunes, L. M. (2008). Mental workload and visual impairment: differences between pupil, blink, and subjective rating. The Spanish Journal of Psychology, 11(2), 374385.Google Scholar
Rees, G., Frith, C. D., & Lavie, N. (1997). Modulating irrelevant motion perception by varying attentional load in an unrelated task. Science, 278, 16161619. doi:10.1126/science.278. 5343.1616Google Scholar
Ryu, K., & Myung, R. (2005). Evaluation of mental workload with a combined measure based on physiological indices during a dual task of tracking and mental arithmetic. International Journal of Industrial Ergonomics, 35(11), 9911009. doi:10.1016/j.ergon.2005.04.005.Google Scholar
Simons, D. J., & Chabris, C. F. (1999). Gorillas in our midst: Sustained inattentional blindness for dynamic events. Perception, 28, 10591074. doi:10.1068/p2952.CrossRefGoogle ScholarPubMed
Stern, J. A., Boyer, D., & Schroeder, D. (1994). Blink rate: a possible measure of fatigue. Human Factors: The Journal of the Human Factors and Ergonomics Society, 36(2), 285297.CrossRefGoogle Scholar
Todd, J. J., Fougnie, D., & Marois, R. (2005). Visual short-term memory load suppresses temporo-parietal junction activity and induces inattentional blindness. Psychological Science, 16(12), 965972. doi:10.1111/j.1467-9280.2005.01645.xCrossRefGoogle ScholarPubMed
Von Helmholtz, H. (1924). Treatise on physiological optics. Rochester, NY: Optical Society of America.Google Scholar
Wickens, C. D. (1984). Processing resources in attention. In Parasuraman, R. & Davies, R. (Eds.), Varieties of attention (pp. 63102). New York, NY: Academic Press.Google Scholar
Wickens, C. D. (1992). Engineering Psychology and human performance. New York, NY: HarperCollins.Google Scholar
Woodman, G. F., & Luck, S. J. (2004). Visual search is slowed when visuospatial working memory is occupied. Psychonomic Bulletin and Review, 11(2), 269274. doi:10.3758/BF03196569.Google Scholar
Woodman, G. F., Vogel, E. K., & Luck, S. J. (2001). Visual search remains efficient when visual working memory is full. Psychological Science, 12(3), 219224. doi:10.1111/1467-9280.00339.CrossRefGoogle ScholarPubMed