Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T10:32:42.264Z Has data issue: false hasContentIssue false

Quantifying the oxygen sensitivity of seed germination using a population-based threshold model

Published online by Cambridge University Press:  01 March 2007

Kent J. Bradford*
Affiliation:
Department of Plant Sciences, One Shields Avenue, University of California, Davis, CA 95616-8780, USA
Daniel Côme
Affiliation:
Université Pierre et Marie Curie-Paris 6, Physiologie Végétale Appliquée, EA 2388 Physiologie des semences, Site d'Ivry, Boîte 152, 4 Place Jussieu, F-75252 Paris, cedex 05, France
Françoise Corbineau
Affiliation:
Université Pierre et Marie Curie-Paris 6, Physiologie Végétale Appliquée, EA 2388 Physiologie des semences, Site d'Ivry, Boîte 152, 4 Place Jussieu, F-75252 Paris, cedex 05, France

Abstract

Seeds vary widely in the sensitivity of germination to oxygen (O2) partial pressure, depending upon the species, temperature, dormancy state and physiological status of the seeds. Most analyses of the O2 sensitivity of germination have focused on final germination percentages and estimated the O2 percentage in air that is required to reduce germination to a given percentage (usually 50%). In contrast, we have applied a population-based threshold model utilizing time courses of germination to quantify three parameters related to seed germination sensitivity to O2 availability: the median base (or threshold) O2 percentage, the standard deviation of O2 thresholds among seeds in the population, and an oxygen–time constant that relates O2 percentage to germination timing. The model fits germination responses accurately across a wide range of O2 concentrations. The response to O2 was logarithmic in all cases, with the O2 percentage required for 50% germination ranging from 21% to as low as 0.005%, depending upon the species, the temperature and the seed dormancy level. Modelling indicated that some seeds can adapt to low O2 percentages and shift their thresholds to lower values over time. Lower temperatures decreased the minimum O2 threshold, as did after-ripening. Seed priming generally reduced the oxygen–time constant and increased the standard deviation of germination responses, but had relatively little effect on the O2 sensitivity per se. The population-based threshold model can be used to quantify the O2 sensitivity of seed germination and to predict germination rates and percentages when O2 availability is limiting.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Ani, A., Bruzau, F., Raymond, P., Saintges, V., Leblanc, J.M. and Pradet, A. (1985) Germination, respiration, and adenylate energy charge of seeds at various oxygen partial pressures. Plant Physiology 79, 885890.CrossRefGoogle ScholarPubMed
Allen, P.S., Benech-Arnold, R.L., Batlla, D. and Bradford, K.J. (2007) Modeling of seed dormancy. pp. 72112 in Bradford, K.J.; Nonogaki, H. (Eds) Seed development, dormancy and germination. Oxford, Blackwell Publishing.CrossRefGoogle Scholar
Alvarado, V. and Bradford, K.J. (2005) Hydrothermal time analysis of seed dormancy in true (botanical) potato seeds. Seed Science Research 15, 7788.CrossRefGoogle Scholar
Bair, N.B., Meyer, S.E. and Allen, P.S. (2006) A hydrothermal after-ripening time model for seed dormancy loss in Bromus tectorum L. Seed Science Research 16, 1728.CrossRefGoogle Scholar
Benech-Arnold, R.L., Gualano, N., Leymarie, J., Côme, D. and Corbineau, F. (2006) Hypoxia interferes with ABA metabolism and increases ABA sensitivity in embryos of dormant barley grains. Journal of Experimental Botany 57, 14231430.CrossRefGoogle ScholarPubMed
Bradford, K.J. (1990) A water relations analysis of seed germination rates. Plant Physiology 94, 840849.CrossRefGoogle ScholarPubMed
Bradford, K.J. (1995) Water relations in seed germination. pp. 351396 in Kigel, J.; Galili, G. (Eds) Seed development and germination. New York, Marcel Dekker.Google Scholar
Bradford, K.J. (2005) Threshold models applied to seed germination ecology. New Phytologist 165, 338341.CrossRefGoogle ScholarPubMed
Bradford, K.J., Tarquis, A.M. and Duran, J.M. (1993) A population-based threshold model describing the relationship between germination rates and seed deterioration. Journal of Experimental Botany 44, 12251234.CrossRefGoogle Scholar
Côme, D. and Tissaoui, T. (1968) Induction d'une dormance embryonnaire secondaire chez le Pommier (Pyrus malus L.) par des atmospheres tres appauvries en oxygene. Comptes Rendus de l'Academie des Sciences, Paris, Serie III 266, 477479.Google Scholar
Côme, D. and Tissaoui, T. (1973) Interrelated effects of imbibition, temperature and oxygen on seed germination. pp. 157168 in Heydecker, W. (Ed.) Seed ecology. London, Butterworths.Google Scholar
Corbineau, F. and Côme, D. (1980) Quelques caractéristiques de la dormance du caryopse d'orge (Hordeum vulgare L., variété Sonja). Comptes Rendus de l'Académie des Sciences, Paris, Série D 290, 547550.Google Scholar
Corbineau, F. and Côme, D. (1985) Effect of temperature, oxygen, and gibberellic acid on the development of photosensitivity in Oldenlandia corymbosa L. seeds during their incubation in darkness. Plant Physiology 79, 411414.CrossRefGoogle ScholarPubMed
Corbineau, F. and Côme, D. (1995) Control of seed germination and dormancy by the gaseous environment. pp. 397424 in Kigel, J.; Galili, G. (Eds) Seed development and germination. New York, Marcel Dekker.Google Scholar
Corbineau, F., Sanchez, A., Côme, D. and Chaussat, R. (1981) La dormance du caryopse de blé (Triticum aestivum L., var. Champlein) en relation avec la température et l'oxygéne. Comptes Rendus des Seances de l'Academie d'Agriculture de France 67, 826834.Google Scholar
Corbineau, F., Belaid, D. and Côme, D. (1992) Dormancy of Bromus rubens L. seeds in relation to temperature, light and oxygen effects. Weed Research 32, 303310.CrossRefGoogle Scholar
Corbineau, F., Picard, M.A. and Côme, D. (1994a) Effects of temperature, oxygen and osmotic pressure on germination of carrot: evaluation of seed quality. Acta Horticulturae 354, 915.CrossRefGoogle Scholar
Corbineau, F., Picard, M.A. and Côme, D. (1994b) Germinability of leek seeds and its improvement by osmopriming. Acta Horticulturae 371, 4552.CrossRefGoogle Scholar
Corbineau, F., Picard, M.A., Bonnet, A. and Côme, D. (1995) Effects of production factors on germination responses of carrot seeds to temperature and oxygen. Seed Science Research 5, 129135.CrossRefGoogle Scholar
Corbineau, F., Bianco, J., Garello, G. and Côme, D. (2002) Breakage of Pseudotsuga menziesii seed dormancy by cold treatment as related to changes in seed ABA sensitivity and ABA levels. Physiologia Plantarum 114, 313319.CrossRefGoogle ScholarPubMed
Covell, S., Ellis, R.H., Roberts, E.H. and Summerfield, R.J. (1986) The influence of temperature on seed germination rate in grain legumes. 1. A comparison of chickpea, lentil, soybean and cowpea at constant temperatures. Journal of Experimental Botany 37, 705715.CrossRefGoogle Scholar
Dahal, P. and Bradford, K.J. (1990) Effects of priming and endosperm integrity on seed germination rates of tomato genotypes. II. Germination at reduced water potential. Journal of Experimental Botany 41, 14411453.CrossRefGoogle Scholar
Dahal, P. and Bradford, K.J. (1994) Hydrothermal time analysis of tomato seed germination at suboptimal temperature and reduced water potential. Seed Science Research 4, 7180.CrossRefGoogle Scholar
Finch-Savage, W.E. (2004) The use of population-based threshold models to describe and predict the effects of seedbed environment on germination and seedling emergence of crops. pp. 5195 in Benech-Arnold, R.; Sánchez, R.A. (Eds) Handbook of seed physiology. Applications to agriculture. New York, Food Products Press.Google Scholar
Finch-Savage, W.E., Côme, D., Lynn, J.R. and Corbineau, F. (2005a) Sensitivity of Brassica oleracea seed germination to hypoxia: a QTL analysis. Plant Science 169, 753759.CrossRefGoogle Scholar
Finch-Savage, W.E., Rowse, H.R. and Dent, K.C. (2005b) Development of combined imbibition and hydrothermal threshold models to simulate maize (Zea mays) and chickpea (Cicer arietinum) seed germination in variable environments. New Phytologist 165, 825838.CrossRefGoogle ScholarPubMed
Gay, C., Corbineau, F. and Côme, D. (1991) Effects of temperature and oxygen on seed germination and seedling growth in sunflower (Helianthus annuus L.). Environmental and Experimental Botany 31, 193200.CrossRefGoogle Scholar
Geigenberger, P. (2003) Response of plant metabolism to too little oxygen. Current Opinion in Plant Biology 6, 247256.CrossRefGoogle ScholarPubMed
Gummerson, R.J. (1986) The effect of constant temperatures and osmotic potentials on the germination of sugar beet. Journal of Experimental Botany 37, 729741.CrossRefGoogle Scholar
Gutterman, Y., Corbineau, F. and Côme, D. (1992) Interrelated effects of temperature, light and oxygen on Amaranthus caudatus L. seed germination. Weed Research 32, 111117.CrossRefGoogle Scholar
Hourmant, A. and Pradet, A. (1981) Oxidative phosphorylation in germinating lettuce seeds (Lactuca sativa) during the first hours of imbibition. Plant Physiology 68, 631635.CrossRefGoogle ScholarPubMed
Huarte, R. and Benech-Arnold, R.L. (2005) Incubation under fluctuating temperatures reduces mean base water potential for seed germination in several non-cultivated species. Seed Science Research 15, 8997.CrossRefGoogle Scholar
Larsen, S.U., Bailly, C., Côme, D. and Corbineau, F. (2004) Use of the hydrothermal time model to analyse interacting effects of water and temperature on germination of three grass species. Seed Science Research 14, 3550.CrossRefGoogle Scholar
Lecat, S., Corbineau, F. and Côme, D. (1992) Effects of gibberellic acid on the germination of dormant oat (Avena sativa L.) seeds as related to temperature, oxygen, and energy metabolism. Seed Science and Technology 20, 421433.Google Scholar
Lenoir, C., Corbineau, F. and Côme, D. (1986) Barley (Hordeum vulgare) seed dormancy as related to glumella characteristics. Physiologia Plantarum 68, 301307.CrossRefGoogle Scholar
Ni, B.R. and Bradford, K.J. (1992) Quantitative models characterizing seed germination responses to abscisic acid and osmoticum. Plant Physiology 98, 10571068.CrossRefGoogle ScholarPubMed
Ni, B.R. and Bradford, K.J. (1993) Germination and dormancy of abscisic acid-deficient and gibberellin-deficient mutant tomato (Lycopersicon esculentum) seeds. Sensitivity of germination to abscisic acid, gibberellin, and water potential. Plant Physiology 101, 607617.CrossRefGoogle Scholar
Oliva, R.N., Tissaoui, T. and Bradford, K.J. (1988) Relationships of plant density and harvest index to seed yield and quality in carrot. Journal of the American Society for Horticultural Science 113, 532537.CrossRefGoogle Scholar
Özbingöl, N. (1998) Evénements cellulaires et métaboliques associés à la stimulation de la germination des graines de tomate (Lycopersicon esculentum Mil.) par un traitement de prégermination. Thesis, Paris, Université Pierre et Marie Curie-Paris 6.Google Scholar
Özbingöl, N., Corbineau, F. and Côme, D. (1998) Responses of tomato seeds to osmoconditioning as related to temperature and oxygen. Seed Science Research 8, 377384.CrossRefGoogle Scholar
Salmen Espindola, L. (1995) Caractéristiques de la germination des graines récalcitrantes d'Araucaria angustifolia et événements cellulaires et métaboliques associés à la perte de viabilité de l'embryon au cours de la déshydratation. Thesis, Paris, Université Pierre et Marie Curie-Paris 6.Google Scholar