Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T21:53:32.510Z Has data issue: false hasContentIssue false

Topological simultaneous localization and mapping: a survey

Published online by Cambridge University Press:  03 December 2013

Jaime Boal*
Affiliation:
Institute for Research in Technology (IIT), ICAI School of Engineering, Comillas Pontifical University, Madrid, Spain
Álvaro Sánchez-Miralles
Affiliation:
Institute for Research in Technology (IIT), ICAI School of Engineering, Comillas Pontifical University, Madrid, Spain
Álvaro Arranz
Affiliation:
Institute for Research in Technology (IIT), ICAI School of Engineering, Comillas Pontifical University, Madrid, Spain
*
*Corresponding author. E-mail: jaime.boal@iit.upcomillas.es

Summary

One of the main challenges in robotics is navigating autonomously through large, unknown, and unstructured environments. Simultaneous localization and mapping (SLAM) is currently regarded as a viable solution for this problem. As the traditional metric approach to SLAM is experiencing computational difficulties when exploring large areas, increasing attention is being paid to topological SLAM, which is bound to provide sufficiently accurate location estimates, while being significantly less computationally demanding. This paper intends to provide an introductory overview of the most prominent techniques that have been applied to topological SLAM in terms of feature detection, map matching, and map fusion.

Type
Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Agrawal, M., Konolige, K. and Blas, M. R., “CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching,” LNCN 5305, 102115 (2008).Google Scholar
2.Aguilar, W., Frauel, Y., Escolano, F., Martínez-Pérez, M. E., Espinosa-Romero, A. and Lozano, M. Á., “A robust graph transformation matching for non-rigid registration,” Image Vis. Comput. 27, 897910 (2009).Google Scholar
3.Andreasson, H., Treptow, A. and Duckett, T., “Localization for Mobile Robots Using Panoramic Vision, Local Features and Particle Filter,” Proceedings of the IEEE International Conference Robotics and Automation, Barcelona, Spain (2005) pp. 33483353.Google Scholar
4.Angeli, A., Doncieux, S., Meyer, J.-A. and Filliat, D., “Incremental Vision-Based Topological SLAM,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France (2008a) pp. 10311036.Google Scholar
5.Angeli, A., Filliat, D., Doncieux, S. and Meyer, J.-A., “A fast and incremental method for loop-closure detection using bags of visual words,” IEEE Trans. Robot. 24 (5), 10271037 (2008b).Google Scholar
6.Angeli, A., Filliat, D., Doncieux, S. and Meyer, J.-A., “Real-Time Visual Loop-Closure Detection,” Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, CA (2008c) pp. 18421847.Google Scholar
7.Anguelov, D., Koller, D., Parker, E. and Thrun, S., “Detecting and modeling doors with mobile robots,” Proc. IEEE Int. Conf. Robot. Autom. 4, 37773784 (2004).Google Scholar
8.Bailey, T. and Durrant-Whyte, H. F., “Simultaneous localization and mapping (SLAM): Part II,” IEEE Robot. Autom. Mag. 13 (3), 108117 (2006).Google Scholar
9.Bay, H., Ess, A., Tuytelaars, T. and van Gool, L., “SURF: Speeded up robust features,” Comput. Vis. Image Underst. 110 (3), 346359 (2008).Google Scholar
10.Beeson, P., Jong, N. K. and Kuipers, B., “Towards Autonomous Topological Place Detection Using the Extended Voronoi Graph,” Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain (2005) pp. 43734379.Google Scholar
11.Blanco, J. L., Fernández-Madrigal, J. A. and González, J., “Toward a unified Bayesian approach to hybrid metric-topological SLAM,” IEEE Trans. Robot. 24 (2), 259270 (2008).Google Scholar
12.Blanco, J. L., González-Jiménez, J. and Fernández-Madrigal, J. A., “Sparser Relative Bundle Adjustment (SRBA): Constant-Time Maintenance and Local Optimization of Arbitrarily Large Maps,” Proceedings of the IEEE International Conference Robotics and Automation, Karlsruhe, Germany (2013) pp. 7077.Google Scholar
13.Bradski, G., “The OpenCV library” (2000). http://opencv.willowgarage.com/.Google Scholar
14.Brooks, R. A., “Visual map making for a mobile robot,” Proc. IEEE Int. Conf. Robot. Autom. 2, 824829 (1985).Google Scholar
15.Brooks, R. A., “Elephants don't play chess,” Robot. Auton. Syst. 6, 315 (1990).Google Scholar
16.Cassandra, A. R., Kaelbling, L. P. and Kurien, J. A., “Acting Under Uncertainty: Discrete Bayesian Models for Mobile-Robot Navigation,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 2, Osaka, Japan (1996) pp. 963972.Google Scholar
17.Chatila, R. and Laumond, J.-P., “Position referencing and consistent world modeling for mobile robots,” Proc. IEEE Int. Conf. Robot. Autom. 2, 138145 (1985).Google Scholar
18.Choset, H. and Nagatani, K., “Topological simultaneous localization and mapping (SLAM): Toward exact localization without explicit localization,” IEEE Trans. Robot. Autom. 17 (2), 125137 (2001).Google Scholar
19.Csurka, G., Dance, C., Fan, L., Williamowski, J. and Bray, C., “Visual Categorization with Bags of Keypoints,” ECCV International Workshop on Statistical Learning in Computer Vision, Prague, Czech Republic (2004) pp. 5974.Google Scholar
20.Cummins, M., Probabilistic Localization and Mapping in Appearance Space Ph.D. Thesis (University of Oxford, 2009).Google Scholar
21.Cummins, M. and Newman, P., “Probabilistic Appearance Based Navigation and Loop Closing,” Proceedings of the IEEE International Conference on Robotics and Automation, Rome, Italy (2007) pp. 20422048.Google Scholar
22.Cummins, M. and Newman, P., “FAB-MAP: Probabilistic localization and mapping in the space of appearance,” Int. J. Robot. Res. 27 (6), 647665 (2008).CrossRefGoogle Scholar
23.Cummins, M. and Newman, P., “Accelerating FAB-MAP with concentration inequalities,” IEEE Trans. Robot. 26 (6), 10421050 (2010a).Google Scholar
24.Cummins, M. and Newman, P., “FAB-MAP: Appearance-Based Place Recognition and Mapping Using a Learned Visual Vocabulary Model,” Proceedings of the International Conference on Machine Learning, Haifa, Israel (2010b) pp. 310.Google Scholar
25.Cummins, M. and Newman, P., “Appearance-only SLAM at large scale with FAB-MAP 2.0,” Int. J. Robot. Res. 30 (9), 11001123 (2011).CrossRefGoogle Scholar
26.Dempster, A. P., “Upper and lower probabilities induced by a multivalued mapping,” Ann. Math. Stat. 38 (2), 325339 (1967).Google Scholar
27.Deng, Y. and Manjunath, B. S., “Unsupervised segmentation of color-texture regions in images and video,” IEEE Trans. Pattern Anal. Mach. Intell. 23 (8), 800810 (2001).Google Scholar
28.Doh, N. L., Lee, K., Chung, W. K. and Cho, H., “Simultaneous localisation and mapping algorithm for topological maps with dynamics,” IET Control Theor. Appl. 3 (9), 12491260 (2009).Google Scholar
29.Doucet, A., de Freitas, N., Murphy, K. and Russell, S., “Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks,” Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, Stanford, CA (2000a) pp. 176–173.Google Scholar
30.Doucet, A., Godsill, S. and Andrieu, C., “On sequential Monte Carlo sampling methods for Bayesian filtering,” Stat. Comput. 10, 197208 (2000b).Google Scholar
31.Duckett, T., Marsland, S. and Shapiro, J., “Learning Globally Consistent Maps by Relaxation,” Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, CA, USA (2000) pp. 38413846.Google Scholar
32.Dudek, G., Freedman, P. and Hadjres, S., “Using Local Information in a Non-Local Way for Mapping Graph-Like Worlds,” International Joint Conference on Artificial Intelligence, Chambery, France (1993) pp. 16391647.Google Scholar
33.Durrant-Whyte, H. F. and Bailey, T., “Simultaneous localization and mapping: Part I,” IEEE Robot. Autom. Mag. 13 (2), 99110 (2006).Google Scholar
34.Ebrahimi, M. and Mayol-Cuevas, W. W., “SUSurE: Speeded up Surround Extrema Feature Detector and Descriptor for Realtime Applications,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami, FL (2009) pp. 914.Google Scholar
35.Filliat, D., “A Visual Bag of Words Method for Interactive Qualitative Localization and Mapping,” Proceedings of the IEEE International Conference on Robotics and Automation, Rome, Italy (2007) pp. 39213926.Google Scholar
36.Filliat, D. and Meyer, J.-A., “Map-based navigation in mobile robots: I. A review of localization strategies,” Cogn. Syst. Res. 4 (4), 243282 (2003).Google Scholar
37.Fischler, M. A. and Bolles, R. C., “Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography,” Commun. ACM 24 (6), 381395 (1981).Google Scholar
38.Forsyth, D. A. and Ponce, J., Computer Vision: A Modern Approach (Prentice Hall, Upper Saddle River, NJ, 2003).Google Scholar
39.Fraundorfer, F., Engels, C. and Nistér, D., “Topological Mapping, Localization and Navigation Using Image Collections,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA (2007) pp. 38723877.Google Scholar
40.Goedemé, T. and van Gool, L., “Robust Vision-Only Mobile Robot Navigation with Topological Maps”, In: Mobile Robots Motion Planning, New Challenges (Jing, X.-J., ed.) (InTech, Austria, 2008) chap. 4, pp. 6388.Google Scholar
41.Goedemé, T., Nuttin, M., Tuytelaars, T. and van Gool, L., “Omnidirectional vision based topological navigation,” Int. J. Comput. Vis. 74 (3), 219236 (2007).Google Scholar
42.Goedemé, T., Tuytelaars, T. and van Gool, L., “Fast wide baseline matching for visual navigation,” Proc. IEEE Comp. Soc. Conf. Comp. Vision Pattern Recogn. 1, 2429 (2004).Google Scholar
43.Goedemé, T., Tuytelaars, T., van Gool, L., Vanacker, G. and Nuttin, M., “Feature Based Omnidirectional Sparse Visual Path Following,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Canada (2005) pp. 18061811.Google Scholar
44.Gutiérrez-Osuna, R. and Luo, R. C., “LOLA Probabilistic navigation for topological maps,” AI Mag. 17 (1), 5562 (1996).Google Scholar
45.Gutmann, J.-S. and Konolige, K., “Incremental Mapping of Large Cyclic Environments”, Proceedings of the International Symposium on Computational Intelligence in Robotics and Automation (1999), pp. 318–325.Google Scholar
46.Hafner, H. H., “Learning Places in Newly Explored Environments,” In: Proceedings of the International Conference on Simulation of Adaptive Behavior (Meyer, Berthoz, Floreano, Roitblat and Wilson, eds.) (International Society for Adaptive Behavior, Honolulu, HI, USA, 2000) pp. 111120.Google Scholar
47.Ho, N. and Jarvis, R., “Vision Based Global Localisation Using a 3D Environmental Model Created by a Laser Range Scanner,” Proceedings of the IEEE/RSJ International Conference Intelligent Robots and Systems, Nice, France (2008) pp. 29642969.Google Scholar
48.Itti, L. and Baldi, P., “A principled approach to detecting surprising events in video,” Proc. IEEE Comp. Soc. Conf. Comp. Vision Pattern Recogn. 1, 631637 (2005).Google Scholar
49.Jacobs, C. E., Finkelstein, A. and Salesin, D. H., “Fast Multiresolution Image Querying,” Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA (1995) pp. 277286.Google Scholar
50.Johnson, C. and Kuipers, B., “Efficient Search for Correct and Useful Topological Maps,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Algarve, Portugal (2012) pp. 52775282.Google Scholar
51.Kaelbling, L. P., Littman, M. L. and Cassandra, A. R., “Planning and acting in partially observable stochastic domains,” Artif. Intell. 101 (1–2), 99134 (1998).Google Scholar
52.Koenig, A., Kessler, J. and Gross, H.-M., “A Graph Matching Technique for an Appearance-Based, Visual SLAM-Approach Using Rao-Blackwellized Particle Filters,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France (2008) pp. 15761581.Google Scholar
53.Koenig, S., Mudgal, A. and Tovey, C., “A Near-Tight Approximation Lower Bound and Algorithm for the Kidnapped Robot Problem,” Proceedings of the Symposium on Discrete Algorithms, Miami, FL (2006) pp. 133142.Google Scholar
54.Koenig, S. and Simmons, R. G., “Unsupervised Learning of Probabilistic Models for Robot Navigation,” Proceedings of the IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA 1996) pp. 23012308.Google Scholar
55.Konolige, K., “Large-Scale Map-Making,” Proceedings of the National Conference on Artificial Intelligence, San Jose, CA (2004) pp. 457463.Google Scholar
56.Kortenkamp, D. and Weymouth, T., “Topological Mapping for Mobile Robots Using a Combination of Sonar and Vision Sensing,” Proceedings of the American Association for Artificial Intelligence (AAAI) Conference, Seattle, WA, USA (1994).Google Scholar
57.Kuipers, B., “The spatial semantic hierarchy,” Artif. Intell. 119, 191233 (2000).Google Scholar
58.Kuipers, B. and Beeson, P., “Bootstrap Learning for Place Recognition,” Proceedings of the 18th National Conference on Artificial Intelligence, Edmonton, Alberta, Canada (2002) pp. 174180.Google Scholar
59.Kuipers, B. and Byun, Y.-T., “A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations,” Robot. Auton. Syst. 8 (1), 4763 (1991).Google Scholar
60.Kuipers, B. and Levitt, T., “Navigation and mapping in large-scale space,” AI Mag., 9 (2), 2543 (1988).Google Scholar
61.Kuipers, B., Modayil, J., Beeson, P., MacMahon, M. and Savelli, F., “Local metrical and global topological maps in the hybrid spatial semantic hierarchy,” Proc. IEEE Int.Conf. Robot. Autom. 5, 48454851 (2004).Google Scholar
62.Lamon, P., Nourbakhsh, I., Jensen, B. and Siegwart, R., “Deriving and Matching Image Fingerprint Sequences for Mobile Robot Localization,” Proceedings of the IEEE International Conference on Robotics and Automation, Seoul, Korea (2001).Google Scholar
63.Leonard, J. J. and Durrant-Whyte, H. F., “Mobile robot localization by tracking geometric beacons,” IEEE Trans. Robot. Autom. 7 (3), 376382 (1991a).Google Scholar
64.Leonard, J. J. and Durrant-Whyte, H. F., “Simultaneous Map Building and Localization for an Autonomous Mobile Robot,” Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems, Osaka, Japan (1991b) pp. 14421447.Google Scholar
65.Li, Y. and Olson, E. B., “IPJC: The Incremental Posterior Joint Compatibility Test for Fast Feature Cloud Matching,” Proceedings of the IEEE/RSJ International Conference Intelligent Robots and Systems, Vilamoura, Algarve, Portugal (2012) pp. 34673474.Google Scholar
66.Lisien, B., Morales, D., Silver, D., Kantor, G., Rekleitis, I. and Choset, H., “Hierarchical Simultaneous Localization and Mapping,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV (2003) pp. 448453.Google Scholar
67.Liu, M., Scaramuzza, D., Pradalier, C., Siegwart, R. and Chen, Q., “Scene Recognition with Omnidirectional Vision for Topological Map Using Lightweight Adaptive Descriptors,” Proceedings of the IEEE/RSJ International Conference Intelligent Robots and Systems, St. Louis, MO, USA (2009) pp. 116121.Google Scholar
68.Liu, M. and Siegwart, R., “DP-FACT: Towards Topological Mapping and Scene Recognition with Color for Omnidirectional Camera,” IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA (2012).Google Scholar
69.Lowe, D. G., “Object recognition from local scale-invariant features,” Proc. IEEE Int. Conf. Computer Vision 2, 11501157.Google Scholar
70.Lowe, D. G., “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60 (2), 91110 (2004).Google Scholar
71.Lu, F. and Milios, E., “Globally consistent range scan alignment for environment mapping,” Auton. Robots 4, 333349 (1997).Google Scholar
72.Lui, W. L. D. and Jarvis, R., “A Pure Vision-Based Approach to Topological SLAM,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan (2010).Google Scholar
73.Maddern, W., Milford, M. and Wyeth, G., “Continuous Appearance-Based Trajectory SLAM,” Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, China (2011) pp. 35953600.Google Scholar
74.Maddern, W., Milford, M. and Wyeth, G., “Capping Computation Time and Storage Requirements for Appearance-Based Localization with CAT-SLAM,” Proceedings of the IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA (2012a) pp. 822827.Google Scholar
75.Maddern, W., Milford, M. and Wyeth, G., “Towards Persistent Indoor Appearance-Based Localization, Mapping and Navigation Using CAT-SLAM,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Algarve, Portugal (2012b) pp. 42244230.Google Scholar
76.Maini, R. and Aggarwal, H., “Study and comparison of various image edge detection techniques,” Int. J. Image Process. 3 (1), 111 (2009).Google Scholar
77.Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T. and van Gool, L., “A comparison of affine region detectors,” Int. J. Comput. Vis. 65 (1), 4372 (2006).Google Scholar
78.Modayil, J., Beeson, P. and Kuipers, B., “Using the Topological Skeleton for Scalable Global Metrical Map-Building,” Proceedings of the IEEE/RSJ International Conference on lntelligent Robots and Systems, Sendai, Japan (2004) pp. 15301536.Google Scholar
79.Montemerlo, M., Thrun, S., Koller, D. and Wegbreit, B., “FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem,” Proceedings of the AAAI National Conference on Artificial Intelligence, Edmonton, Canada (2002).Google Scholar
80.Needleman, S. B. and Wunsch, C. D., “A general method applicable to the search for similarities in the amino acid sequence of two proteins,” J. Mol. Biol. 48, 443453 (1970).Google Scholar
81.Neira, J. and Tardós, J. D., “Data association in stochastic mapping using the joint compatibility test,” IEEE Trans. Robot. Autom. 17 (6), 890897 (2001).Google Scholar
82.Nguyen, V., Martinelli, A., Tomatis, N. and Siegwart, R., “A Comparison of Line Extraction Algorithms Using 2D Laser Rangefinder for Indoor Mobile Robotics,” Proceedings of the IEEE/RSJ International Conference Intelligent Robots and Systems, Edmonton, Canada (2005) pp. 19291934.Google Scholar
83.Nieto, J. I., Guivant, J. E. and Nebot, E. M., “The Hybrid Metric Maps (HYMMs): A novel map representation for DenseSLAM,” Proc. IEEE Int. Conf. Robot. Autom. 1, 391396 (2004).Google Scholar
84.Nüchter, A. and Hertzberg, J., “Towards semantic maps for mobile robots,” Robot. Auton. Syst. 56, 915926 (2008).Google Scholar
85.Owen, C. and Nehmzow, U., “Landmark-Based Navigation for a Mobile Robot,” In: Proceedings of the Simulation of Adaptive Behaviour (MIT Press, 1998) pp. 240245.Google Scholar
86.Paul, R. and Newman, P., “FAB-MAP 3D: Topological Mapping with Spatial and Visual Appearance,” Proceedings of the IEEE International Conference on Robotics and Automation, Anchorage, AK, USA (2010) pp. 26492656.Google Scholar
87.Pfister, S. T., Roumeliotis, S. I. and Burdick, J. W., “Weighted line fitting algorithms for mobile robot map building and efficient data representation,” Proc. IEEE Int. Conf. Robot. Autom. 1, 13041311 (2003).Google Scholar
88.Pirjanian, P., Karlsson, N., Goncalves, L. and di Bernardo, E., “Low-cost visual localization and mapping for consumer robotics,” Ind. Robot Int. J. 30 (2), 139144 (2003).Google Scholar
89.Ramos, F. T., Upcroft, B., Kumar, S. and Durrant-Whyte, H. F., “A Bayesian Approach for Place Recognition,” Proceedings of the IJCAI Workshop on Reasoning with Uncertainty in Robotics, Edinburgh, Scotland (2005).Google Scholar
90.Ranganathan, A., Probabilistic Topological Maps Ph.D. Thesis (Georgia Institute of Technology, 2008).Google Scholar
91.Ranganathan, A. and Dellaert, F., “Inference in the Space of Topological Maps: An MCMC-Based Approach,” Proceedings of the IEEE/RSJ International Conference Intelligent Robots and Systems, Sendai, Japan (2004) pp. 15181523.Google Scholar
92.Ranganathan, A. and Dellaert, F., “A Rao-Blackwellized Particle Filter for Topological Mapping,” Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, FL, USA (2006) pp. 810817.Google Scholar
93.Ranganathan, A. and Dellaert, F., Automatic Landmark Detection for Topological Mapping Using Bayesian Surprise Technical Report (Georgia Institute of Technology, 2008).Google Scholar
94.Ranganathan, A. and Dellaert, F., “Online probabilistic topological mapping,” Int. J. Robot. Res. 30 (6), 755771 (2011).Google Scholar
95.Ranganathan, A., Menegatti, E. and Dellaert, F., “Bayesian inference in the space of topological maps,” IEEE Trans. Robot. 22 (1), 92107 (2006).Google Scholar
96.Remolina, E. and Kuipers, B., “Towards a general theory of topological maps,” Artif. Intell. 152, 47104 (2004).Google Scholar
97.Romero, A. and Cazorla, M., “Topological SLAM Using Omnidirectional Images: Merging Feature Detectors and Graph-matching,” Proceedings of the Advanced Concepts for Intelligent Vision Systems, Sydney, Australia (2010) pp. 464475.Google Scholar
98.Romero, A. and Cazorla, M., “Topological visual mapping in robotics,” Cogn. Process. 13(1 Supplement), 305308 (2012).Google Scholar
99.Sabatta, D., Scaramuzza, D. and Siegwart, R., “Improved Appearance-Based Matching in Similar and Dynamic Environments Using a Vocabulary Tree,” Proceedings of the IEEE International Conference on Robotics and Automation, Anchorage, AK (2010).Google Scholar
100.Sabatta, D. G., “Vision-Based Topological Map Building and Localisation Using Persistent Features,” Robotics and Mechatronics Symposium, Bloemfontein, South Africa (2008) pp. 16.Google Scholar
101.Savelli, F. and Kuipers, B., “Loop-Closing and Planarity in Topological Map-Building,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan (2004) pp. 15111517.Google Scholar
102.Se, S., Lowe, D. G. and Little, J. J., “Vision-based global localization and mapping for mobile robots,” IEEE Trans. Robot. 21 (3), 364375 (2005).Google Scholar
103.Shatkay, H. and Kaelbling, L. P., “Learning Topological Maps with Weak Local Odometric Information,” Proceedings of the International Conference on Artificial Intelligence, Nagoya, Japan (1997) pp. 920929.Google Scholar
104.Sivic, J. and Zisserman, A., “Video Google: A text retrieval approach to object matching in videos,” Proc. IEEE Int. Conf. Comput. Vis. 2, 14701477 (2003).Google Scholar
105.Stachniss, C., Martínez-Mozos, O., Rottmann, A. and Burgard, W., “Semantic Labeling of Places,” Proceedings of the International Symposium of Robotics Research, San Francisco, CA, USA (2005).Google Scholar
106.Stankiewicz, B. J. and Kalia, A. A., “Acquisition of structural versus object landmark knowledge,” J. Exp. Psychol. Hum. Perception Perform. 33 (2), 378390 (2007).Google Scholar
107.Tao, T., Tully, S., Kantor, G. and Choset, H., “Incremental Construction of the Saturated-GVG for Multi-Hypothesis Topological SLAM,” Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, China (2011) pp. 30723077.Google Scholar
108.Tapus, A., Topological SLAM – Simultaneous Localization and Mapping with Fingerprints of Places Ph.D. Thesis (École Polytechnique Fédérale de Lausanne, Switzerland, 2005).Google Scholar
109.Tapus, A. and Siegwart, R., “Incremental Robot Mapping with Fingerprints of Places,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Canada (2005) pp. 24292434.Google Scholar
110.Thrun, S., “Robotic Mapping: A Survey,” In: Exploring Artificial Intelligence in the New Millenium (Lakemeyer, G. and Nebel, B., eds.) (Morgan Kaufmann, San Francisco, CA, 2002) pp. 135.Google Scholar
111.Tomatis, N., Nourbakhsh, I. and Siegwart, R., “Hybrid Simultaneous Localization and Map Building: Closing the Loop with Multi-Hypotheses Tracking,” Proceedings of the IEEE International Conference Robotics and Automation, Washington, DC (2002) pp. 27492754.Google Scholar
112.Tully, S., Kantor, G., Choset, H. and Werner, F., “A Multi-Hypothesis Topological SLAM Approach for Loop Closing on Edge-Ordered Graphs,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA (2009) pp. 49434948.Google Scholar
113.Ulrich, I. and Nourbakhsh, I., “Appearance-Based Place Recognition for Topological Localization,” Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, CA, USA (2000) pp. 10231029.Google Scholar
114.Vasudevan, S., Gáchter, S., Nguyen, V. and Siegwart, R., “Cognitive maps for mobile robots: an object based approach,” Robot. Auton. Syst. 55, 359371 (2007).Google Scholar
115.Werner, F., Gretton, C., Maire, F. and Sitte, J., “Induction of Topological Environment Maps from Sequences of Visited Places,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France (2008a) pp. 28902895.Google Scholar
116.Werner, F., Maire, F. and Sitte, J., “Topological SLAM Using Fast Vision Techniques,” Proceedings of the Advances in Robotics: FIRA RoboWorld Congress, Incheon, Korea (2009a) pp. 187198.Google Scholar
117.Werner, F., Maire, F., Sitte, J., Choset, H., Tully, S. and Kantor, G., “Topological SLAM Using Neighbourhood Information of Places,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA (2009b).Google Scholar
118.Werner, F., Sitte, J. and Maire, F., “Visual Topological Mapping and Localisation Using Colour Histograms,” Proceedings of the International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam (2008b) pp. 341346.Google Scholar
119.Werner, F., Sitte, J. and Maire, F., “Topological map induction using neighbourhood information of places,” Auton. Robots 32 (4), 405418 (2012).Google Scholar
120.Yamauchi, B., Schultz, A. and Adams, W., “Mobile Robot Exploration and Map-Building with Continuous Localization,” Proceedings of the International Conference on Robotics and Automation, Leuven, Belgium (1998).Google Scholar
121.Zivkovic, Z., Bakker, B. and Kröse, B., “Hierarchical Map Building Using Visual Landmarks and Geometric Constraints,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Canada (2005) pp. 24802485.Google Scholar