Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T15:16:38.864Z Has data issue: false hasContentIssue false

Teaching–learning-based optimal interval type-2 fuzzy PID controller design: a nonholonomic wheeled mobile robots

Published online by Cambridge University Press:  19 April 2013

Mohammad Hassan Khooban*
Affiliation:
Young Researchers Club, Garmsar Branch, Islamic Azad University, Garmsar, Iran
Alireza Alfi
Affiliation:
Faculty of Electrical and Robotic Engineering, Shahrood University of Technology, Shahrood 36199-95161, Iran
Davood Nazari Maryam Abadi
Affiliation:
Department of Electrical Engineering, Garmsar Branch, Islamic Azad University of Iran, Garmsar, Iran
*
*Corresponding author. E-mail: mhkhoban@googlemail.com

Summary

This paper introduces an optimal interval type-2 fuzzy proportional–integral–derivative (PID) controller to achieve the best trajectory tracking for nonholonomic wheeled mobile robots (WMRs). In the core of the proposed method, a novel population-based optimization algorithm, called teaching–learning-based optimization (TLBO), is employed for evolving the parameters of the controller as well as the parameters of the input and output membership functions. Two PID controllers are designed for each of two wheels separately whereas each controller has two inputs and one output that are logically connected by nine rules. The controller can handle the problem of integrated kinematic and dynamic tracking in the presence of uncertainties. Simulation results demonstrate the superiority of the proposed control scheme.

Type
Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kolmanovsky, I. and McClamroch, N. H., “Developments in nonholonomic control problems,” IEEE Control Syst. 15 (12), 2036 (1995).Google Scholar
2.Tang, H. H., Mailah, M., Kasim, M. and Jalil, A., “Robust intelligent active force control of nonholonomic wheeled mobile robot,” J. Teknologik Univ. Teknologi Malays. 44, 4964 (2006).Google Scholar
3.Fierro, R. and Lewis, F. L., “Control of a nonholonomic mobile robot using neural networks,” IEEE Trans. Neural Netw. 9 (4), 589600 (1998).CrossRefGoogle ScholarPubMed
4.Das, T. and Kar, I. N., “Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots,” IEEE Trans. Control Syst. Technol. 14 (3), 501510 (2006).CrossRefGoogle Scholar
5.Abdessemed, F., Benmahammed, K. H. and Monacelli, E., “A fuzzy-based reactive controller for a non-holonomic mobile robot,” Robot. Auton. Syst. 47, 3146 (2004).CrossRefGoogle Scholar
6.Xianhua, J., Yuichi, M. and Xingquan, Z., “Predictive Fuzzy Control for a Mobile Robot with Nonholonomic Constraints,” Proceedings of the International Conference on Advanced Robotics (18–20 July 2005), Washington, USA.Google Scholar
7.Mendel, J. M., Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions (Prentice-Hall, Upper Saddle River, NJ, 2001).Google Scholar
8.John, R., “Type 2 fuzzy sets: An appraisal of theory and applications,” J. Uncertain. Fuzziness Knowl. Based Syst. 6 (6), 563576 (1998).CrossRefGoogle Scholar
9.Liang, Q., Karnik, N. and Mendel, J., “Connection admission control in ATM networks using survey-based type 2 fuzzy logic systems,” IEEE Trans. Syst. Man Cybern. 30, 329339 (2000).Google Scholar
10.Mendel, J. and John, R., “Type-2 fuzzy sets made simple,” IEEE Trans. Fuzzy Syst. 10, 117127 (2002).CrossRefGoogle Scholar
11.Martinez, R., Castillo, O. and Aguilar, L. T., “Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms,” Inf. Sci. 179, 21582174 (2009).CrossRefGoogle Scholar
12.Castillo, O., Martinez-Marroquin, R., Melin, P., Valdez, F. and Soria, J., “Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot,” Inf. Sci. 192, 1938 (2012).CrossRefGoogle Scholar
13.Rao, R. V., Savsani, V. J. and Vakharia, D. P., “Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems,” Comput. Aided Des. 43, 303315 (2011).CrossRefGoogle Scholar
14.Fierro, R. and Lewis, F. L., “Control of a Nonholonomic Mobile Robot: Backstepping Kinematics into Dynamics,” Proceedings of the IEEE International Conference Decision and Control, vol. 4, LA (1995) pp. 38053810.Google Scholar
15.Fukao, T., Nakagawa, H. and Adachi, N., “Adaptive tracking control of a nonholonomic mobile robot,” IEEE Trans. Robot. Autom. 1 (5), 609615 (2000).CrossRefGoogle Scholar
16.Hagras, H., “A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots,” IEEE Trans. Fuzzy Syst. 12, 524539 (2004).CrossRefGoogle Scholar
17.Hagras, H., “Type-2 FLCs: A new generation of fuzzy controllers,” IEEE Comput. Intell. Mag. 2 (1), 3043 (2007).CrossRefGoogle Scholar
18.Wu, D. and Tan, W. W., “Genetic learning and performance evaluation of type-2 fuzzy logic controllers,” Eng. Appl. Artif. Intell. 19 (8), 829841 (2006).CrossRefGoogle Scholar
19.Zadeh, L. A., “The concept of a linguistic variable and its application to approximate reasoning-1,” Inf. Sci. 8, 199249 (1975).CrossRefGoogle Scholar
20.Karnik, N. N. and Mendel, J. M., “Centroid of a type-2 fuzzy set,” Inf. Sci. 132, 195220 (2001).CrossRefGoogle Scholar
21.Mendel, J. M. and Wu, D., Perceptual Computing: Aiding People in Making Subjective Judgments (Wiley-IEEE Press, Hoboken, NJ, 2010).CrossRefGoogle Scholar
22.Wu, D. and Mendel, J. M., “Enhanced Karnik–Mendel algorithms,” IEEE Trans. Fuzzy Syst. 17 (4), 923934 (2009).Google Scholar
23.Li, H. X., Zhang, L., Cai, K. Y. and Chen, G., “An improved robust fuzzy-PID controller with optimal fuzzy reasoning,” IEEE Trans. Syst. Man Cybern. 35 (6), 12831294 (2005).CrossRefGoogle ScholarPubMed
24.Khooban, M. H., Abadi, D. Nazari Maryam and Alfi, A., “Swarm optimization tuned Mamdani fuzzy controller for diabetes delayed model,” Turk. J. Electr. Eng. Comput. Sci. DOI: 10.3906/elk-1202–21 (2012), available at: http://mistug.tubitak.gov.tr/bdyim/kabul.php?dergi=elkGoogle Scholar
25.Kwang, H. L., First Course on Fuzzy Theory and Applications (Springer-Verlag, Berlin Heidelberg, 2005).Google Scholar
26.Shojaei, K., Shahri, A. M. and Tarakameh, A., “Adaptive feedback linearizing control of nonholonomic wheeled mobile robots in presence of parametric and nonparametric uncertainties,” Robot. Comput.-Integr. Manuf. 27, 194204 (2011).CrossRefGoogle Scholar