Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-11T07:42:30.025Z Has data issue: false hasContentIssue false

Kinematics inverse solution of assembly robot based on improved particle swarm optimization

Published online by Cambridge University Press:  04 January 2024

Shixiong Zhang*
Affiliation:
School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, China
Ang Li
Affiliation:
School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, China
Jianxin Ren
Affiliation:
School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, China
Ruilong Ren
Affiliation:
School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, China
*
Corresponding author: Shixiong Zhang; Email: cehon@126.com

Abstract

Inverse kinematics of robot is the basis of robot assembly, which directly determines the pose of robot. Because the traditional inverse solution algorithm is limited by the robot topology structure, singular pose and inverse solution accuracy, it affects the use of robots. In order to solve the above problems, an improved particle swarm optimization (PSO) algorithm is proposed to solve the inverse problem of robot. This algorithm initializes the particle population based on joint angle limitations, accelerating the convergence speed of the algorithm. In order to avoid falling into local optima and premature convergence, we have proposed a nonlinear weight strategy to update the speed and position of particles, enhancing the algorithm’s search ability, in addition introducing a penalty function to eliminate particles exceeding joint limits. Finally, the positions of common points and singular points are selected on PUMA 560 robot and redundant robot for inverse kinematics simulation verification. The results show that, compared with other algorithms, the improved PSO algorithm has higher convergence accuracy and better convergence speed in solving the inverse solution, and the algorithm has certain universality, which provides a new solution for the inverse kinematics solution of the assembly robot.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Xu, J., Liu, K., Pei, Y., Yang, C., Cheng, Y. and Liu, Z., “A noncontact control strategy for circular peg-in-hole assembly guided by the 6-DOF robot based on hybrid vision,” IEEE Trans. Instrum. Meas. 71, 115 (2022).Google Scholar
Song, J., Chen, Q. and Li, Z., “A peg-in-hole robot assembly system based on Gauss mixture model,” Robot. Comput. Integr. Manuf. 67, 101996 (2021).Google Scholar
Starke, S., Hendrich, N., Magg, S. and Zhang, J., “An Efficient Hybridization of Genetic Algorithms and Particle Swarm Optimization for Inverse Kinematics,” In: 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO) (IEEE, 2016) pp. 17821789.Google Scholar
Rokbani, N. and Alimi, A. M., “Inverse kinematics using particle swarm optimization, a statistical analysis,” Proc. Eng. 64, 16021611 (2013).Google Scholar
Gao, R., “Inverse kinematics solution of Robotics based on neural network algorithms,” J. Ambient Intell. Humaniz. Comput. 11(12), 61996209 (2020).Google Scholar
Netjinda, N., Achalakul, T. and Sirinaovakul, B., “Particle Swarm Optimization inspired by starling flock behavior,” Appl. Soft Comput. 35, 411422 (2015).Google Scholar
Nagata, F., Kishimoto, S., Kurita, S., Otsuka, A. and Watanabe, K., “Neural Network-Based Inverse Kinematics for an Industrial Robot and Its Learning Method,” In: The Proceedings of the 4th International Conference on Industrial Application Engineering (2016).Google Scholar
Zhang, L. B., Li, Y. P., Zhu, D. M. and Fu, Y. L., “Inverse kinematic solution of nursing robot based on genetic algorithm,” J. Beijing Univ. Aeronaut. Astronaut. 48(10), 19251932 (2022) (in Chinese).Google Scholar
Xiao-long, S., Ji-fang, W., Zi-sheng, G. and Fei, M., “Inverse kinematics solution of manipulator based on improved differential evolution algorithm,” Modular Mach. Tool Autom. Manuf. Tech. 2022(4), 16 (2022).Google Scholar
Liang, J., Guo, H., Chen, K., Yu, K., Yue, C. and Li, X., “An improved Kalman particle swarm optimization for modeling and optimizing of boiler combustion characteristics,” Robotica 41(4), 10871097 (2023). doi: 10.1017/S026357472200145X.Google Scholar
Mei, C., Songyuan, H. and Huimin, H., “Welding robot inverse kinematics solution based on improved chicken swarm algorithm,” Mach. Des. Res. 38(02), 8892+104 (2022).Google Scholar
Liang, P., Li, W. and Huang, Y., “Multi-population Cooperative Particle Swarm Optimization with Covariance Guidance,” In: 2022 4th International Conference on Data-driven Optimization of Complex Systems (DOCS) (IEEE, 2022) pp. 16.Google Scholar
Deng, H. and Xie, C., “An improved particle swarm optimization algorithm for inverse kinematics solution of multi-DOF serial robotic manipulators,” Soft Comput. 25(21), 1369513708 (2021).Google Scholar
Liu, F., Huang, H., Li, B. and Xi, F., “A parallel learning particle swarm optimizer for inverse kinematics of robotic manipulator,” Int. J. Intell. Syst. 36(10), 61016132 (2021).Google Scholar
Zhao, G., Jiang, D., Liu, X., Tong, X., Sun, Y., Tao, B., Kong, J., Yun, J., Liu, Y. and Fang, Z., “A tandem robotic arm inverse kinematic solution based on an improved particle swarm algorithm,” Front. Bioeng. Biotechnol. 10, 832829 (2022).Google Scholar
Yiyang, L., Xi, J., Hongfei, B., Zhining, W. and Liangliang, S., “A general robot inverse kinematics solution method based on improved PSO algorithm,” IEEE Access 9, 3234132350 (2021).Google Scholar
Liu, Y., Xiao, F., Tong, X., Tao, B., Xu, M., Jiang, G., Chen, B., Cao, Y. and Sun, N., “Manipulator trajectory planning based on work subspace division,” Concurr. Comput. Pract. Exp. 34(5), e6710 (2022).Google Scholar
Wang, D., Tan, D. and Liu, L., “Particle swarm optimization algorithm: An overview,” Soft Comput. 22(2), 387408 (2018).Google Scholar
Alebooyeh, M. and Urbanic, R. J., “Neural network model for identifying workspace, forward and inverse kinematics of the 7-DOF YuMi 14000 ABB collaborative robot,” IFAC-PapersOnLine 52(10), 176181 (2019).Google Scholar