Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T14:44:41.276Z Has data issue: false hasContentIssue false

Improved global localization of an indoor mobile robot via fuzzy extended information filtering

Published online by Cambridge University Press:  01 March 2008

Hung-Hsing Lin
Affiliation:
Department of Electrical Engineering, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung 40227, Taiwan, R.O.C
Ching-Chih Tsai*
Affiliation:
Department of Electrical Engineering, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung 40227, Taiwan, R.O.C
*
*Corresponding author. E-mail: cctsai@dragon.nchu.edu.tw

Summary

Global localization of mobile robots has been well studied using the extended Kalman filter (EKF) method. This paper presents a fuzzy extended information filtering (FEIF) approach to improving global localization of an indoor autonomous mobile robot with ultrasonic and laser scanning measurements. A real-time FEIF algorithm is proposed to improve accuracy of static global pose estimation via multiple ultrasonic data. By fusing odometric, ultrasonic, and laser scanning data, a real-time FEIF-based pose tracking algorithm is developed to improve accuracy of the robot's continuous poses. Several experimental results are performed to confirm the efficacy of the proposed methods.

Type
Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Jensfelt, P. and Kristensen, S., “Active global localization for a mobile robot using multiple hypotheses tracking,” IEEE Trans. Robot. Automat. 17 (5), 748760 (2001).CrossRefGoogle Scholar
2.Košecká, J., Li, F. and Yang, X., “Global localization and relative positioning based on scale-invariant keypoints,” J. Robot. Autonom. Syst. 52 (1), 2738 (2005).CrossRefGoogle Scholar
3.Stephen, S., David, G. L. and James, J. L., “Vision-based global localization and mapping for mobile robots,” IEEE Trans. Robot. 21 (3), 364375 (2005).Google Scholar
4.Se, S., Lowe, D. G. and Little, J. J., “Vision-based global localization and mapping for mobile robots,” IEEE Trans. Robot. Automat. 21 (3), 364375 (2005).Google Scholar
5.Yuen, D. C. K. and MacDonald, B. A., “Vision-based localization algorithm based on landmark matching, triangulation, reconstruction, and comparison,” IEEE Trans. Robot. Automat. 21 (2), 217226 (2005).CrossRefGoogle Scholar
6.Lin, H. H., Tsai, C. C., Hsu, J. C. and Chang, C. F., “Ultrasonic self-localization and pose tracking of an autonomous mobile robot via fuzzy adaptive extended information filtering,” Proceedings of IEEE International Conference on Robotics and Automation, Taiwan (September, 2003) pp. 1283–1290.Google Scholar
7.Forsberg, J., Larsson, U. and Wernersson, Å., “Mobile robot navigation using the Range-Weighted Hough transform,” IEEE Robot. Automat. Mag. 2 (1), 1826 (1995).Google Scholar
8.Larsson, U., Forsberg, J. and Wernersson, Å., “Mobile robot localization: integrating measurements from a time-of-flight laser,” IEEE Trans. Ind. Electron. 43 (3), 422431 (1996).CrossRefGoogle Scholar
9.Dubrawski, A. and Siemiatkowska, I., “A method for tracking the pose of a mobile robot equipped with a scanning laser range finder,” IEEE Trans. Robot. Automat. 3 (3), 25182523 (1998).Google Scholar
10.Kim, Y. H., “Localization of a mobile robot using a laser range finder in a hierarchical navigation system,” IEEE Proceedings of Southeastcon, Charlotte, (April, 1993) pp. 1–4.Google Scholar
11.Jensfelt, P. and Christensen, H. I., “Pose tracking using laser scanning and minimalistic environmental models,” IEEE Trans. Robot. Automat. 17 (2), 138147 (2001).Google Scholar
12.Hähnel, D., Burgard, W., Fox, D., Fishkin, K. and Philipose, M., “Mapping and localization with RFID technology,” Proceddings of IEEE International Conference on Robotics and Automation, New Orleans, LA, USA (April, 2004) pp. 1015–1020.Google Scholar
13.Tsai, C. C., Lin, H. H., Hsu, J. C., “Posture estimation and tracking of an autonomous mobile robot using a laser scanner with retro-reflectors,” J. Chinese Inst. Engineers 30 (1), 103114 (2007).Google Scholar
14.Thrun, S., Liu, Y., Koller, D., Ng, A. Y., Ghahramani, Z. and Durrant-Whyte, H., _“Simultaneous localization and mapping with sparse extended information filters,” Int J. Robot. Res. 23 (7), 693716 (2004).Google Scholar
15.Tard'os, J. D., Neira, J., Newman, P. M. and Leonard, J. J., “Robust mapping and localization in indoor environments using sonar data,” Int. J. Robot. Res. 21 (4), 311330 (2002).Google Scholar
16.Wu, C. J. and Tsai, C. C., “Localization of an autonomous mobile robot based on ultrasonic sensory information,” J. Int. Robot. Syst. 30 (3), 267277 (2001).Google Scholar
17.Tsai, C. C., “A localization system of a mobile robot by fusing dead-reckoning and ultrasonic measurements,” IEEE Trans. Instrum. Meas. 47 (5), 13991404 (1998).CrossRefGoogle Scholar
18.Anousaki, G. C. and Kyriakopoulos, T., “Simultaneous localization and map building for mobile robot navigation,” IEEE Robot. Automat. Mag. 6 (3), 4253 (1999).CrossRefGoogle Scholar
19.Lizarralde, F., Nunes, E. V. L., Liu, H., Wen, J. T., “Mobile robot navigation using sensor fusion,” IEEE International Conference on Robotics and Automation, Taiwan (September, 2003), pp. 14–19.Google Scholar
20.Leonard, J. J. and Durrant-Whyte, H. F., Directed Sonar Sensing for Mobile Robot Navigation (Kluwer, Boston, Massachusetts, 1992).Google Scholar
21.Triggs, B., “Model-based sonar localization for mobile robots,” Robot. Auton. Syst. 12 (3-4), 173186 (1994).CrossRefGoogle Scholar
22.Figueroa, F. and Mahajan, A., “A robust navigation system for autonomous vehicles using ultrasonics,” Control Eng. Pract. 2 (1), 4959 (1994).CrossRefGoogle Scholar
23.Sabatini, A. M., “A digital signal processing techniques for compensating ultrasonic sensors,” IEEE Trans. Instrum. Meas. 44 (4), 869874 (1995).Google Scholar
24.Woo, J., Kim, Y. J., Lee, J. O., Lim, M. T., “Localization of Mobile Robot using Particle Filter,” SICE-ICASE, International Joint Conference, Busan, Korea (October, 2006) pp. 3031–3034.Google Scholar
25.Andreu, C. M., Josep, M. M. T., Alberto, S., “Estimation of hypotheses reduction for active and cooperative mobile robot global localization in large environments,” to appear in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, California (October, 2007).Google Scholar
26.Meng, Q. H., Sun, Y. C. and Cao, Z. L., “Adaptive extended Kalman filter (AEKF)-based mobile robot localization using sonar,” Robotica 18 (5), 459473 (2000).Google Scholar
27.Mutambara, A. G. O., Decentralized Estimation and Control for Multisensor Systems (CRC Press LLC, Boca Raton, Florida, 1998).Google Scholar
28.Gelb, A., Applied Optimal Estimation (MIT Press, Cambridge, Massachusetts, 1974).Google Scholar
29.Lewis, F. L., Optimal Estimation with an Introduction to Stochastic Control Theory (John Wiley & Sons, New York, 1986).Google Scholar
30.Abdelnour, G., Chand, S., Chiu, S., and Kido, T., “On-line detection & correction of Kalman filter divergence by fuzzy logic,” Proceedings of American Control Conference, San Francisco, CA (June, 1993) pp. 1835–1839.Google Scholar
31.Maybeck, P. S., Stochastic Models, Estimation, and Control, vol. 1 (Academic Press, New York, 1979) pp. 368405.Google Scholar
32.Tsai, C. C., Lin, H. H. and Hsu, J. C., “Fuzzy adaptive extended information filtering,” Int. J. Fuzzy Syst. 7 (1), 3139 (2005).Google Scholar
33.Zadeh, L. A., “Fuzzy logic,” Computer 21 (4), 8393 (1988).Google Scholar
34.Tsai, C. C., Lin, H. H., Lai, S. W., “Multisensor 3D posture determination of a mobile robot using inertial and ultrasonic sensors,” J. Intell. Robot. Syst. 42 (4), 317335 (2005).CrossRefGoogle Scholar