Skip to main content Accessibility help
×
Home
Hostname: page-component-5cfd469876-kqxn7 Total loading time: 0.321 Render date: 2021-06-25T07:47:15.892Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }
RNA RNA

Article contents

Structure–function relationships in the hammerhead ribozyme probed by base rescue

Published online by Cambridge University Press:  01 November 1998

ALESSIO PERACCHI
Affiliation:
Department of Biochemistry, Stanford University, Stanford, California 94305-5307, USA Present address: Institute of Biochemical Sciences, University of Parma, 43100 Parma, Italy
JASENKA MATULIC-ADAMIC
Affiliation:
Ribozyme Pharmaceuticals Inc., Boulder, Colorado 80301, USA
SHENGLONG WANG
Affiliation:
Department of Biochemistry, Stanford University, Stanford, California 94305-5307, USA
LEONID BEIGELMAN
Affiliation:
Ribozyme Pharmaceuticals Inc., Boulder, Colorado 80301, USA
DANIEL HERSCHLAG
Affiliation:
Department of Biochemistry, Stanford University, Stanford, California 94305-5307, USA
Get access

Abstract

We previously showed that the deleterious effects from introducing abasic nucleotides in the hammerhead ribozyme core can, in some instances, be relieved by exogenous addition of the ablated base and that the relative ability of different bases to rescue catalysis can be used to probe functional aspects of the ribozyme structure [Peracchi et al., Proc Nat Acad Sci USA 93:11522]. Here we examine rescue at four additional positions, 3, 9, 12 and 13, to probe transition state interactions and to demonstrate the strengths and weaknesses of base rescue as a tool for structure–function studies. The results confirm functional roles for groups previously probed by mutagenesis, provide evidence that specific interactions observed in the ground-state X-ray structure are maintained in the transition state, and suggest formation in the transition state of other interactions that are absent in the ground state. In addition, the results suggest transition state roles for some groups that did not emerge as important in previous mutagenesis studies, presumably because base rescue has the ability to reveal interactions that are obscured by local structural redundancy in traditional mutagenesis. The base rescue results are complemented by comparing the effects of the abasic and phenyl nucleotide substitutions. The results together suggest that stacking of the bases at positions 9, 13 and 14 observed in the ground state is important for orienting other groups in the transition state. These findings add to our understanding of structure–function relationships in the hammerhead ribozyme and help delineate positions that may undergo rearrangements in the active hammerhead structure relative to the ground-state structure. Finally, the particularly efficient rescue by 2-methyladenine at position 13 relative to adenine and other bases suggests that natural base modifications may, in some instance, provide additional stability by taking advantage of hydrophobic interactions in folded RNAs.

Type
Research Article
Information
RNA , Volume 4 , Issue 11 , November 1998 , pp. 1332 - 1346
Copyright
© 1998 RNA Society

Access options

Get access to the full version of this content by using one of the access options below.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Structure–function relationships in the hammerhead ribozyme probed by base rescue
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Structure–function relationships in the hammerhead ribozyme probed by base rescue
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Structure–function relationships in the hammerhead ribozyme probed by base rescue
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *