Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-ftpnm Total loading time: 0.112 Render date: 2021-09-17T20:54:03.286Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }
RNA RNA

Article contents

A purine-rich intronic element enhances alternative splicing of thyroid hormone receptor mRNA

Published online by Cambridge University Press:  29 June 2001

MICHELLE L. HASTINGS
Affiliation:
Department of Biology, Marquette University, Milwaukee, Wisconsin 53201, USA Present address: Cold Spring Harbor Laboratory, P.O. Box 100, Cold Spring Harbor, New York 11724, USA.
CATHERINE M. WILSON
Affiliation:
Department of Biology, Marquette University, Milwaukee, Wisconsin 53201, USA Present address: Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA.
STEPHEN H. MUNROE
Affiliation:
Department of Biology, Marquette University, Milwaukee, Wisconsin 53201, USA
Get access

Abstract

The mammalian thyroid hormone receptor gene c-erbAα gives rise to two mRNAs that code for distinct isoforms, TRα1 and TRα2, with antagonistic functions. Alternative processing of these mRNAs involves the mutually exclusive use of a TRα1-specific polyadenylation site or TRα2-specific 5′ splice site. A previous investigation of TRα minigene expression defined a critical role for the TRα2 5′ splice site in directing alternative processing. Mutational analysis reported here shows that purine residues within a highly conserved intronic element, SEα2, enhance splicing of TRα2 in vitro as well as in vivo. Although SEα2 is located within the intron of TRα2 mRNA, it activates splicing of a heterologous dsx pre-mRNA when located in the downstream exon. Competition with wild-type and mutant RNAs indicates that SEα2 functions by binding trans-acting factors in HeLa nuclear extract. Protein–RNA crosslinking identifies several proteins, including SF2/ASF and hnRNP H, that bind specifically to SEα2. SEα2 also includes an element resembling a 5′ splice site consensus sequence that is critical for splicing enhancer activity. Mutations within this pseudo-5′ splice site sequence have a dramatic effect on splicing and protein binding. Thus SEα2 and its associated factors are required for splicing of TRα2 pre-mRNA.

Type
Research Article
Copyright
2001 RNA Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A purine-rich intronic element enhances alternative splicing of thyroid hormone receptor mRNA
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A purine-rich intronic element enhances alternative splicing of thyroid hormone receptor mRNA
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A purine-rich intronic element enhances alternative splicing of thyroid hormone receptor mRNA
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *