Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-tcbk7 Total loading time: 0.163 Render date: 2021-09-16T16:46:34.771Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }
RNA RNA

Article contents

The 5′ end of the 18S rRNA can be positioned from within the mature rRNA

Published online by Cambridge University Press:  01 May 1999

KISHOR SHARMA
Affiliation:
European Molecular Biology Laboratory, Gene Expression Programme, 69012 Heidelberg, Germany
JAAP VENEMA
Affiliation:
European Molecular Biology Laboratory, Gene Expression Programme, 69012 Heidelberg, Germany Present address: Department of Biochemistry and Molecular Biology, Vrije Universiteit, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
DAVID TOLLERVEY
Affiliation:
European Molecular Biology Laboratory, Gene Expression Programme, 69012 Heidelberg, Germany Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, United Kingdom
Get access

Abstract

In yeast, the 5′ end of the mature 18S rRNA is generated by endonucleolytic cleavage at site A1, the position of which is specified by two distinct signals. An evolutionarily conserved sequence immediately upstream of the cleavage site has previously been shown to constitute one of these signals. We report here that a conserved stem-loop structure within the 5′ region of the 18S rRNA is recognized as a second positioning signal. Mutations predicted to either extend or destabilize the stem inhibited the normal positioning of site A1 from within the 18S rRNA sequence, as did substitution of the loop nucleotides. In addition, these mutations destabilized the mature 18S rRNA, indicating that recognition of the stem-loop structure is also required for 18S rRNA stability. Several mutations tested reduced the efficiency of pre-rRNA cleavage at site A1. There was, however, a poor correlation between the effects of the different mutations on the efficiency of cleavage and on the choice of cleavage site, indicating that these involve recognition of the stem-loop region by distinct factors. In contrast, the cleavages at sites A1 and A2 are coupled and the positioning signals appear to be similar, suggesting that both cleavages may be carried out by the same endonuclease.

Type
Research Article
Copyright
© 1999 RNA Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The 5′ end of the 18S rRNA can be positioned from within the mature rRNA
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The 5′ end of the 18S rRNA can be positioned from within the mature rRNA
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The 5′ end of the 18S rRNA can be positioned from within the mature rRNA
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *