Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-56sbs Total loading time: 0.341 Render date: 2021-09-16T22:16:46.596Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

WHAT RUSSELL SHOULD HAVE SAID TO BURALI–FORTI

Published online by Cambridge University Press:  27 February 2017

SALVATORE FLORIO*
Affiliation:
University of Birmingham
GRAHAM LEACH-KROUSE*
Affiliation:
Kansas State University
*Corresponding
*DEPARTMENT OF PHILOSOPHY UNIVERSITY OF BIRMINGHAM BIRMINGHAM, UK E-mail: s.florio@bham.ac.uk
DEPARTMENT OF PHILOSOPHY KANSAS STATE UNIVERSITY MANHATTAN, KS, USA E-mail: gleachkr@ksu.edu

Abstract

The paradox that appears under Burali–Forti’s name in many textbooks of set theory is a clever piece of reasoning leading to an unproblematic theorem. The theorem asserts that the ordinals do not form a set. For such a set would be–absurdly–an ordinal greater than any ordinal in the set of all ordinals. In this article, we argue that the paradox of Burali–Forti is first and foremost a problem about concept formation by abstraction, not about sets. We contend, furthermore, that some hundred years after its discovery the paradox is still without any fully satisfactory resolution. A survey of the current literature reveals one key assumption of the paradox that has gone unquestioned, namely the assumption that ordinals are objects. Taking the lead from Russell’s no class theory, we interpret talk of ordinals as an efficient way of conveying higher-order logical truths. The resulting theory of ordinals is formally adequate to standard intuitions about ordinals, expresses a conception of ordinal number capable of resolving Burali–Forti’s paradox, and offers a novel contribution to the longstanding program of reducing mathematics to higher-order logic.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boolos, G. (1998). Reply to Charles Parsons’ “Sets and Classes”. In Jeffery, R., editor. Logic, Logic, and Logic. Cambridge, MA: Harvard University Press, pp. 3036.Google Scholar
Burali-Forti, C. (1897). Una questione sui numeri transfiniti. Rendiconti del circolo matematico di Palermo, 11, 154164.CrossRefGoogle Scholar
Burgess, J. (2004). E pluribus unum: Plural logic and set theory. Philosophia Mathematica, 12, 193221.CrossRefGoogle Scholar
Cantor, G. (1878). Ein Beitrag zur Mannigfaltigkeitslehre. Journal für die reine und angewandte Mathematik, 84, 242258.CrossRefGoogle Scholar
Cantor, G. (1883). Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Ein mathematisch-philosophischer Versuch in der Lehre des Unendlichen. Teubner, Leipzig. Translated as “Foundations of a general theory of manifolds: A mathematico-philosophical investigation into the theory of the infinite”. In Ewald, W., editor. From Kant to Hilber: A Source Book in the Foundations of Mathematics, Vol. 2. Oxford University Press, 1996, pp. 878919.
Cook, R. T. (2003). Iteration one more time. Notre Dame Journal of Formal Logic, 44, 6392.CrossRefGoogle Scholar
Ebels-Duggan, S. (2015). The nuisance principle in infinite settings. Thought, 4, 263268.Google Scholar
Ferreira, F. (2005). Amending Frege’s Grundgesetze der Arithmetik. Synthese, 147, 319.CrossRefGoogle Scholar
Ferreira, F. & Wehmeier, K. F. (2002). On the consistency of the ${\rm{\Delta }}_1^1 $ -CA fragment of Frege’s Grundgesetze. Journal of Philosophical Logic, 31, 301311.CrossRefGoogle Scholar
Ferreirós, J. (2007). Labyrinth of Thought: A History of Set Theory and its Role in Modern Mathematics. Basel: Birkhäuser.Google Scholar
Florio, S. & Linnebo, Ø. (in progress). The Many and the One: A Philosophical Study.
Frege, G. (1884). Grundlagen der Arithmetik. Translated by Austin, J. L. as The Foundations of Arithmetic (second revised edition). Blackwell, 1974.Google Scholar
Frege, G. (1979). Posthumous writings. In Hermes, H., Kambartel, F., and Kaulbach, F., editors. Posthumous Writings. Oxford: Basil Blackwell.Google Scholar
Glanzberg, M. (2004). Quantification and realism. Philosophy and Phenomenological Research, 69, 541571.CrossRefGoogle Scholar
Glanzberg, M. (2006). Context and unrestricted quantification. In Rayo, A. and Uzquiano, G., editors. Absolute Generality. Oxford: Oxford University Press, pp. 2044.Google Scholar
Gödel, K. (1944). Russell’s mathematical logic. In Feferman, S., editor. Collected Works, Volume II, Publications 1938–1974. Oxford: Oxford University Press, 1990, pp. 119143.Google Scholar
Gödel, K. (1964). What is Cantor’s continuum problem? In Feferman, S., editor. Collected Works, Volume II, Publications 1938–1974. Oxford: Oxford University Press, 1990, pp. 176188.Google Scholar
Grassmann, H. (1844). Die lineale Ausdehnungslehre: ein neuer Zweig der Mathematik . Wigand, Otto. Translated by Lloyd, C. Kannenberg in A New Branch of Mathematics. The Ausdehnungslehre of 1844 and Other Works. Chicago, Open Court: 1995.Google Scholar
Grassmann, H. 1847. Geometrische Analyse geknüpft an die von Leibniz erfundene geometrische Charakteristik. Gekrönte Preisschrift, Leipzig: Wiedmann. Translated by Kannenberg, Lloyd C. in A New Branch of Mathematics. The Ausdehnungslehre of 1844 and Other Works, Open Court, 1995.Google Scholar
Hazen, A. P. (1986). Logical objects and the paradox of Burali-Forti. Erkenntnis, 24, 283291.CrossRefGoogle Scholar
Heath, T. L. (editor) (1908). The Thirteen Books of the Elements, Vol. 2. Cambridge, UK: Cambridge University Press.Google Scholar
Heck, R. (1996). The consistency of predicative fragments of Frege’s Grundgesetze der Arithmetik. History and Philosophy of Logic, 17, 209220.CrossRefGoogle Scholar
Hellman, G. (2011). On the significance of the Burali-Forti paradox. Analysis, 71, 631637.CrossRefGoogle Scholar
Hodes, H. (1986). Logicism and the ontological commitments of arithmetic. Journal of Philosophy, 81, 123149.CrossRefGoogle Scholar
Jourdain, P. E. B. (1904). On the transfinite cardinal numbers of well-ordered aggregates. Philosophical Magazine, 7, 6175.CrossRefGoogle Scholar
Klement, K. C. (in press). A generic Russellian elimination of abstract objects. Philosophia Mathematica.Google Scholar
Leibniz, G. W. (1989). Philosophical Papers and Letters. Dordrecht: Kluwer Academic Publishers.Google Scholar
Linnebo, Ø. (2004). Predicative fragments of Frege Arithmetic. Bulletin of Symbolic Logic, 10, 153174.CrossRefGoogle Scholar
Linnebo, Ø. (2010). Pluralities and sets. Journal of Philosophy, 107, 144164.CrossRefGoogle Scholar
Linnebo, Ø. & Pettigrew, R. (2014). Two types of abstraction for structuralism. Philosophical Quarterly, 64, 267283.CrossRefGoogle Scholar
Mancosu, P. (2015). Grundlagen, section 64: Freges discussion of definitions by abstraction in historical context. History and Philosophy of Logic, 36, 6289.CrossRefGoogle Scholar
Moore, G. H. & Garciadiego, A. (1981). Burali-Forti’s paradox: A reappraisal of its origins. Historia Mathematica, 8, 319350.CrossRefGoogle Scholar
Parsons, C. (1974a). The liar paradox. Journal of Philosophical Logic, 3, 381412.CrossRefGoogle Scholar
Parsons, C. (1974b). Sets and classes. Noûs, 8, 112.CrossRefGoogle Scholar
Poincaré, H. (1912). The latest efforts of the logisticians. The Monist, 22, 524539.Google Scholar
Russell, B. (1903). The Principles of Mathematics (second edition). New York: W.W. Norton and Company.Google Scholar
Russell, B. (1905). On some difficulties in the theory of transfinite numbers and order types. Proceedings of the London Mathematical Society, 4, 2935.Google Scholar
Russell, B. (1908). Mathematical logic as based on a theory of types. American Journal of Mathematics, 30, 222262.CrossRefGoogle Scholar
Russell, B. (1910). Some explanations in reply to Mr. Bradley. Mind, 19, 373378.CrossRefGoogle Scholar
Shapiro, S. (2003). All sets great and small: And I do mean ALL. Philosophical Perspectives, 17, 467490.CrossRefGoogle Scholar
Shapiro, S. (2007). Burali-Forti’s revenge. In Beall, J., editor. Revenge of the Liar: New Essays on the Paradox. Oxford: Oxford University Press, pp. 320344.Google Scholar
Shapiro, S. & Weir, A. (1999). New V, ZF and abstraction. Philosophia Mathematica, 7, 293321.CrossRefGoogle Scholar
Shapiro, S. & Wright, C. (2006). All things indefinitely extensible. In Rayo, A. and Uzquiano, G., editors. Absolute Generality. Oxford: Oxford University Press, pp. 253304.Google Scholar
Simpson, S. (2009). Subsystems of Second Order Arithmetic. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Studd, J. P. (2016). Abstraction reconceived. British Journal for the Philosophy of Science, 67, 579615.CrossRefGoogle Scholar
Uzquiano, G. (2003). Plural quantification and classes. Philosophia Mathematica, 11, 6781.CrossRefGoogle Scholar
Walsh, S. (in press). Fragments of Frege’s Grundgesetze and Gödels constructible universe. Journal of Symbolic Logic.Google Scholar
Walsh, S. & Ebels-Duggan, S. (2015). Relative categoricity and abstraction principles. Review of Symbolic Logic, 8, 572606.CrossRefGoogle Scholar
Wright, C. (1999). Is Hume’s Principle analytic? Notre Dame Journal of Formal Logic, 40, 630.Google Scholar
Zermelo, E. (1930). Über Grenzzahlen und Mengenbereiche: Neue Untersuchungen über die Grundlagen der Mengenlehre. Fundamenta Mathematicae, 16, 29–47. Translated as “On Boundary Numbers and Domains of Sets: New Investigations in the Foundations of Set Theory”. In Ewald, W., editor. From Kant to Hilber: A Source Book in the Foundations of Mathematics, Vol. 2. Oxford University Press, 1996, pp. 12191233.Google Scholar
5
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

WHAT RUSSELL SHOULD HAVE SAID TO BURALI–FORTI
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

WHAT RUSSELL SHOULD HAVE SAID TO BURALI–FORTI
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

WHAT RUSSELL SHOULD HAVE SAID TO BURALI–FORTI
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *