Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-hl5gf Total loading time: 0.518 Render date: 2023-01-29T06:35:16.750Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

THE LOGIC OF HYPERLOGIC. PART B: EXTENSIONS AND RESTRICTIONS

Published online by Cambridge University Press:  12 October 2022

ALEXANDER W. KOCUREK*
Affiliation:
SAGE SCHOOL OF PHILOSOPHY CORNELL UNIVERSITY ITHACA, NY 14850, USA
*

Abstract

This is the second part of a two-part series on the logic of hyperlogic, a formal system for regimenting metalogical claims in the object language (even within embedded environments). Part A provided a minimal logic for hyperlogic that is sound and complete over the class of all models. In this part, we extend these completeness results to stronger logics that are sound and complete over restricted classes of models. We also investigate the logic of hyperlogic when the language is enriched with hyperintensional operators such as counterfactual conditionals and belief operators.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Alechina, N., Logan, B., & Whitsey, M. (2004). A complete and decidable logic for resource-bounded agents. In Jennings, N. R., Sierra, C., Sonenberg, L., and Tambe, M., editors. Proceedings of the Third International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2004). New York: ACM Press, pp. 606613.Google Scholar
Baltag, A. & Smets, S. (2006). Conditional doxastic models: A qualitative approach to dynamic belief revision. Electronic Notes in Theoretical Computer Science, 165, 521.10.1016/j.entcs.2006.05.034CrossRefGoogle Scholar
Bennett, J. F. (2003). A Philosophical Guide to Conditionals. Oxford: Oxford University Press.10.1093/0199258872.001.0001CrossRefGoogle Scholar
Bernstein, S. (2016). Omission impossible. Philosophical Studies, 173(10), 25752589.10.1007/s11098-016-0672-9CrossRefGoogle Scholar
Berto, F. (2010). Impossible worlds and propositions: Against the parity thesis. The Philosophical Quarterly, 60(240), 471486.10.1111/j.1467-9213.2009.627.xCrossRefGoogle Scholar
Berto, F., French, R., Priest, G., & Ripley, D. (2018). Williamson on counterpossibles. Journal of Philosophical Logic, 47, 693713.CrossRefGoogle ScholarPubMed
Berto, F. & Nolan, D. (2021). Hyperintensionality. In Zalta, E. N., editor. The Stanford Encyclopedia of Philosophy. Palo Alto, CA: Metaphysics Research Lab, Stanford University. Available from: https://plato.stanford.edu/entries/hyperintensionality/.Google Scholar
Bjerring, J. C. (2013). Impossible worlds and logical omniscience: An impossibility result. Synthese, 190, 25052524.10.1007/s11229-011-0038-yCrossRefGoogle Scholar
Bjerring, J. C. & Schwarz, W. (2017). Granularity problems. The Philosophical Quarterly, 67(266), 2237.10.1093/pq/pqw028CrossRefGoogle Scholar
Bjerring, J. C. & Skipper, M. (2019). A dynamic solution to the problem of logical omniscience. Journal of Philosophical Logic, 48, 501521.CrossRefGoogle Scholar
Boutilier, C. E. (1992). Conditional Logics for Default Reasoning and Belief Revision. Ph.D. Thesis, University of Toronto.Google Scholar
Brogaard, B. & Salerno, J. (2013). Remarks on counterpossibles. Synthese, 190(4), 639660.10.1007/s11229-012-0196-6CrossRefGoogle Scholar
Clarke-Doane, J. (2019). Modal objectivity. Noûs, 53(2), 266295.10.1111/nous.12205CrossRefGoogle Scholar
Cohen, D. H. (1987). The problem of counterpossibles. Notre Dame Journal of Formal Logic, 29(1), 91101.10.1305/ndjfl/1093637773CrossRefGoogle Scholar
Cohen, D. H. (1990). On what cannot be. In Jon Michael Dunn and Anil Gupta editors, Truth or Consequences. Dordrecht: Springer, pp. 123132.CrossRefGoogle Scholar
Duc, H. N. (1997). Reasoning about rational, but not logically omniscient, agents. Journal of Logic and Computation, 7(5), 633648.10.1093/logcom/7.5.633CrossRefGoogle Scholar
Elga, A. & Rayo, A. (2021). Fragmentation and logical omniscience. Noûs, 56, 716741.CrossRefGoogle Scholar
Emery, N. & Hill, C. S. (2017). Impossible worlds and metaphysical explanation: Comments on Kment’s modality and explanatory reasoning. Analysis, 77(1), 134148.Google Scholar
Fine, K. (1970). Propositional quantifiers in modal logic. Theoria, 36(3), 336346.10.1111/j.1755-2567.1970.tb00432.xCrossRefGoogle Scholar
French, R., Girard, P., & Ripley, D. (2020). Classical counterpossibles. Review of Symbolic Logic, 15, 259275.10.1017/S1755020319000637CrossRefGoogle Scholar
Friedman, N. & Halpern, J. Y. (1997). Modeling belief in dynamic systems, part I: Foundations. Artificial Intelligence, 95, 257316.10.1016/S0004-3702(97)00040-4CrossRefGoogle Scholar
Goodman, J. (2004). An extended Lewis/Stalnaker semantics and the new problem of counterpossibles. Philosophical Papers, 33(1), 3566.10.1080/05568640409485135CrossRefGoogle Scholar
Hawke, P., Özgün, A., & Berto, F. (2019). The fundamental problem of logical omniscience. Journal of Philosophical Logic, 49, 727766.10.1007/s10992-019-09536-6CrossRefGoogle Scholar
Hintikka, J. (1975). Impossible possible worlds vindicated. Journal of Philosophical Logic, 4, 475484.10.1007/BF00558761CrossRefGoogle Scholar
Hoek, D. (2022). Questions in action. Journal of Philosophy, 119, 113143.10.5840/jphil202211938CrossRefGoogle Scholar
Jago, M. (2007). Hintikka and Cresswell on logical omniscience. Logic and Logical Philosophy, 15, 325354.CrossRefGoogle Scholar
Jago, M. (2014). The Impossible. Oxford: Oxford University Press.10.1093/acprof:oso/9780198709008.001.0001CrossRefGoogle Scholar
Jago, M. (2015). Hyperintensional propositions. Synthese, 192, 585601.10.1007/s11229-014-0461-yCrossRefGoogle Scholar
Jenny, M. (2018). Counterpossibles in science: The case of relative computability. Noûs, 52(3), 530560.10.1111/nous.12177CrossRefGoogle Scholar
Kim, S. & Maslen, C. (2006). Counterfactuals as short stories. Philosophical Studies, 129(1), 81117.10.1007/s11098-005-3022-xCrossRefGoogle Scholar
Kment, B. (2014). Modality and Explanatory Reasoning. Oxford: Oxford University Press.10.1093/acprof:oso/9780199604685.001.0001CrossRefGoogle Scholar
Kocurek, A. W. (2021a). Counterpossibles. Philosophy Compass, 16(11), e12787.10.1111/phc3.12787CrossRefGoogle Scholar
Kocurek, A. W. (2021b). Logic talk. Synthese, 199(5–6), 1366113688.10.1007/s11229-021-03394-zCrossRefGoogle Scholar
Kocurek, A. W. (2022). The logic of hyperlogic. Part A: Foundations. Review of Symbolic Logic, 128. DOI: 10.1017/S1755020322000193 Google Scholar
Kocurek, A. W. & Jerzak, E. J. (2021). Counterlogicals as counterconventionals. Journal of Philosophical Logic, 50(4), 673704.CrossRefGoogle Scholar
Krakauer, B. (2012). Counterpossibles. Ph.D. Thesis, University of Massachusetts, Amherst.Google Scholar
Kratzer, A. (1979). Conditional necessity and possibility. In Bäuerle, R., Egli, U., and von Stechow, A., editors. Semantics from Different Points of View. Berlin–Heidelberg–New York: Springer, pp. 117147.10.1007/978-3-642-67458-7_9CrossRefGoogle Scholar
Lamarre, P. & Shoham, Y. (1994). Knowledge, certainty, belief and conditionalisation. In Doyle, J., Sandewall, E., and Torasso, P., editors. Principles of Knowledge Representation and Reasoning: Proceedings 4th International Conference (KR’94). San Francisco: Elsevier, pp. 415424.10.1016/B978-1-4832-1452-8.50134-2CrossRefGoogle Scholar
Lewis, D. K. (1973). Counterfactuals. Cambridge: Harvard University Press.Google Scholar
Mares, E. D. (1997). Who’s afraid of impossible worlds? Notre Dame Journal of Formal Logic, 38(4), 516526.10.1305/ndjfl/1039540767CrossRefGoogle Scholar
Merricks, T. (2001). Objects and Persons. Oxford: Oxford University Press.10.1093/0199245363.001.0001CrossRefGoogle Scholar
Moses, Y. & Shoham, Y. (1993). Belief as defeasible knowledge. Artificial Intelligence, 64, 299321.CrossRefGoogle Scholar
Nolan, D. (1997). Impossible worlds: A modest approach. Notre Dame Journal of Formal Logic, 38(4), 535572.10.1305/ndjfl/1039540769CrossRefGoogle Scholar
Ripley, D. (2012). Structures and circumstances: Two ways to fine-grain propositions. Synthese, 189, 97118.10.1007/s11229-012-0100-4CrossRefGoogle Scholar
Sedlár, I. (2015). Substructural epistemic logics. Journal of Applied Non-Classical Logics, 25, 256285.10.1080/11663081.2015.1094313CrossRefGoogle Scholar
Skipper, M. & Bjerring, J. C. (2020). Hyperintensional semantics: A Fregean approach. Synthese, 197, 35353558.10.1007/s11229-018-01900-4CrossRefGoogle Scholar
Soysal, Z. (2022). A metalinguistic and computational approach to the problem of mathematical omniscience. Philosophy and Phenomenological Research, 120. DOI: 10.1111/phpr.12864 Google Scholar
Stalnaker, R. C. (1968). A theory of conditionals. In Rescher, N., editor. Studies in Logical Theory. American Philosophical Quarterly Monographs, Vol. 2. Oxford: Basil Blackwell, pp. 98112.Google Scholar
Stalnaker, R. C. (1976a). Possible worlds. Noûs, 10(1), 6575.10.2307/2214477CrossRefGoogle Scholar
Stalnaker, R. C. (1976b). Propositions. In MacKay, A. F. and Merrill, D. D., editors. Issues in Philosophy of Language. New Haven: Yale University Press, pp. 7991.Google Scholar
Stalnaker, R. C. (1984). Inquiry. Cambridge: MIT Press.Google Scholar
Stalnaker, R. C. (1996). Impossibilities. Philosophical Topics, 24(1), 193204.CrossRefGoogle Scholar
Tan, P. (2019). Counterpossible non-vacuity in scientific practice. Journal of Philosophy, 116(1), 3260.10.5840/jphil201911612CrossRefGoogle Scholar
van Benthem, J. (2007). Dynamic logic for belief revision. Journal of Applied Non-Classical Logics, 17(2), 129155.10.3166/jancl.17.129-155CrossRefGoogle Scholar
van Ditmarsch, H. P. (2005). Prolegomena to dynamic logic for belief revision. Synthese, 147, 229275.CrossRefGoogle Scholar
Vander Laan, D. A. (2004). Counterpossibles and similarity. In Jackson, F. and Priest, G., editors. Lewisian Themes. Oxford: Oxford University Press, pp. 258275.Google Scholar
Williamson, T. (2007). The Philosophy of Philosophy. Malden, MA: Blackwell Publishers.10.1002/9780470696675CrossRefGoogle Scholar
Williamson, T. (2017) Counterpossibles in semantics and metaphysics. Argumenta, 2(2), 195226.Google Scholar
Yalcin, S. (2018). Belief as question-sensitive. Philosophy and Phenomenological Research, 97(1), 2347.10.1111/phpr.12330CrossRefGoogle Scholar
Zagzebski, L. T. (1990). What if the impossible had been actual? In Beatty, M., editor. Christian Theism and the Problems of Philosophy. Notre Dame: University of Notre Dame Press, pp. 165183.Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

THE LOGIC OF HYPERLOGIC. PART B: EXTENSIONS AND RESTRICTIONS
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

THE LOGIC OF HYPERLOGIC. PART B: EXTENSIONS AND RESTRICTIONS
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

THE LOGIC OF HYPERLOGIC. PART B: EXTENSIONS AND RESTRICTIONS
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *