Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-rcd7l Total loading time: 0.534 Render date: 2021-10-18T18:03:53.454Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Inhibin

Published online by Cambridge University Press:  02 March 2009

Henry G Burger*
Affiliation:
Prince Henry's Institute of Medical Research, Melbourne, Australia
*
Henry G Burger, Director, Prince Henry's Institute of Medical Research, Clayton, Victoria 3168, Australia.
Get access

Extract

Inhibin is a glycoprotein hormone, consisting of two dissimilar, disulphide-linked subunits, termed α (MW 20kD) and β (MW 3-15kD), which inhibits the production and/or secretion of pituitary gonadotrophins, preferentially follicle stimulating hormone (FSH). The most widely studied inhibin molecule has a molecular weight of 31-32kD, as purified and cloned from bovine, porcine, ovine, rat and human sources. Higher molecular weight forms have been identified in ovarian follicular fluids and in culture media of granulosa and Sertoli cells, and generally differ from the 31kD form in having larger α-subunits, designated by their molecular weights, e.g. α44 in 58kD inhibin. There are two forms of the β-subunit, named βA and βB and the corresponding inhibin dimers have been named inhibin A and inhibin B. Dimers of the β-subunit, which have been shown to have FSH stimulating activity, are termed activins and are designated activin A, B or AB depending on whether the dimer is a homodimer of βA or βB or a heterodimer of βA and βB (Figure 1). The major gonadal source of inhibin is the granulosa cell in the female and the Sertoli cell in the male. Other potential cellular sites of origin will be discussed below.

Type
Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Burger, HG, Igarashi, M. Inhibin: definition and nomenclature, including related substances. J Clin Endocrinol Metab 1988; 66: 885–86.Google ScholarPubMed
2 Erickson, GF, Hsueh, AJW. Secretion of ‘inhibin’ by rat granulosa cells in vitro. Endocrinology 1978; 103: 1960–61.CrossRefGoogle ScholarPubMed
3 Steinberger, A, Steinberger, E. Secretion of an FSH-inhibiting factor by cultured Sertoli cells. Endocrinology 1976; 99: 918–21.CrossRefGoogle ScholarPubMed
4 Setchell, BP, Main, SJ. Inhibin. Biblio Reprod 1974; 24: 245–52/361–67.Google Scholar
5 Baker, HWG, Bremner, WJ, Burger, HG et al. Testicular control of follicle-stimulating hormone secretion. Recent Prog Horm Res 1976; 32: 429–76.Google ScholarPubMed
6 Franchimont, P, Verstraelen-Proyard, J, Hazee-Hagelstein, MT et al. Inhibin: from concept to reality. Vitam Horm 1979; 37: 243302.CrossRefGoogle Scholar
7 Li, CH, Ramasharma, K. Inhibin. Ann Rev Pharamacol Toxicol 1987; 27: 121.CrossRefGoogle ScholarPubMed
8 McLachlan, RI, Robertson, DM, de Kretser, DM, Burger, HG. Inhibin – a non-steroidal regulator of pituitary follicle stimulating hormone. In: Burger, HG ed. Baillière's clinical endocrinology and metabolism. London: Baillière Tindall, 1987: 89112.Google Scholar
9 McLachlan, RI, Robertson, DM, de Kretser, DM, Burger, HG. Advances in the physiology of inhibin and inhibin-related peptides. Clin Endocrinol (Oxf) 1988; 29: 77114.CrossRefGoogle ScholarPubMed
10 de Jong, FH. Inhibin – its nature, site of production and function. Oxf Rev Reprod Biol 1987; 9: 153.Google ScholarPubMed
11 de Jong, FH. Inhibin. Physiol Rev 1988; 68: 555607.Google ScholarPubMed
12 Ying, SY. Inhibins, activins and follistatins: gonadal proteins modulating the secretion of folliclestimulating hormone. Endocr Rev 1988; 9: 267–93.CrossRefGoogle Scholar
13 Vale, W, Rivier, C, Hsueh, A et al. Chemical and biological characterization of the inhibin family of protein hormones. Recent Prog Horm Res 1988; 44: 134.Google ScholarPubMed
14 Burger, HG, McLachlan, RI, Robertson, DM, Bremner, WJ, de Kretser, DM. Inhibin and the regulation of testicular function: historical and clinical aspects. Ann NY Acad Sci 1989; 564: 19.CrossRefGoogle ScholarPubMed
15 de Kretser, DM, Robertson, DM. The isolation and physiology of inhibin and related proteins. Biol Reprod 1989; 40: 3347.CrossRefGoogle ScholarPubMed
16 Risbridger, GP, Robertson, DM, de Kretser, DM. Current perspectives of inhibin biology. Acta Endocrinol [Copenh] 1990; 122: 673–82.Google ScholarPubMed
17 Burger, HG. Inhibin: clinical physiology and cancer diagnosis. Reprod Fertil Dev 1991; 3: 227–31.CrossRefGoogle Scholar
18 Burger, HG, de Kretser, DM, Findlay, JK, Igarashi, M eds. Inhibin-non-steroidal regulation of follicle stimulating hormone secretion, volume 42. New York: Raven Press, 1987.Google Scholar
19 Robertson, DM, Foulds, LM, Leversha, L et al. Isolation of inhibin from bovine follicular fluid. Biochem Biophys Res Commun 1985; 126: 220–26.CrossRefGoogle ScholarPubMed
20 Mason, AJ, Hayflick, JS, Ling, N et al. Complementary DNA sequences of ovarian follicular fluid inhibin show precursor structure and homology with transforming growth factor-B. Nature 1985; 318: 659–63.CrossRefGoogle Scholar
21 Forage, RG, Ring, JM, Brown, RW et al. Cloning and sequencing analysis of cDNA species coding for the two subunits of inhibin from bovine follicular fluid. Proc Natl Acad Sci USA 1986; 83: 3091–95.CrossRefGoogle Scholar
22 Derynck, R, Jarrett, JA, Chen, EY et al. Human transforming growth factor-B complementary DNA sequence and expression in normal and transformed cells. Nature 1985; 316: 701705.CrossRefGoogle Scholar
23 Cate, RL, Mattaliano, RJ, Hession, C et al. Isolation of the bovine and human genes for mullerian inhibiting substance and expression of the human gene in animal cells. Cell 1986; 45: 685–98.CrossRefGoogle ScholarPubMed
24 Padgett, RW, St Johnston, RD, Gelbart, WM. A transcript from a Drosophila pattern gene predicts a protein homologous to the transforming growth factor-B family. Nature 1987; 325: 8184.CrossRefGoogle Scholar
25 Weeks, DL, Melton, DA. A maternal mRNA localized to the vegetal hemisphere in xenopus eggs codes for a growth factor related to TGF-β. Cell 1987; 51: 861–67.CrossRefGoogle ScholarPubMed
26 Wozney, JM, Rosen, V, Celester, AJ et al. Novel regulators of bone formation: molecular clones and activities. Science 1988; 242: 1528–34.CrossRefGoogle ScholarPubMed
27 Rosen, SW, Weintraub, BD. Monotropic increase of serum FSH correlated with low sperm count in young men with idiopathic oligospermia and aspermia. J Clin Endocrinol Metab 1971; 32: 410–16.CrossRefGoogle ScholarPubMed
28 de Kretser, DM, Burger, HG, Fortune, D et al. Hormonal, histological and chromosomal studies in adult males with testicular disorders. J Clin Endocrinol Metab 1972; 35: 392401.CrossRefGoogle ScholarPubMed
29 Franchimont, P, Millet, D, Vendrely, E, Letawe, J, Legros, JJ, Netter, A. Relationship between spermatogenesis and serum gonadotropin levels in azoospermia and oligospermia. J Clin Endocrinol Metab 1972; 34: 10031008.CrossRefGoogle ScholarPubMed
30 Keogh, EJ, Lee, VWK, Rennie, GC, Burger, HG, Hudson, B, de Kretser, DM. Selective suppression of FSH by testicular extracts. Endocrinology 1976; 98: 9971002.CrossRefGoogle ScholarPubMed
31 Eddie, LW, Baker, HWG, Higginson, RE, Hudson, B. A bioassay for inhibin using pituitary cell cultures. J Endocrinol 1979; 81: 4960.CrossRefGoogle ScholarPubMed
32 Scott, RS, Burger, HG, Quigg, H. A simple and rapid in vitro bioassay for inhibin. Endocrinology 1980; 107: 1536–42.CrossRefGoogle ScholarPubMed
33 Lee, VWK, Colvin, N, Quigg, H et al. . A rapid, sensitive and reliable assay for inhibin bioactivity. Aust J Biol Sci 1987; 40: 105–13.Google ScholarPubMed
34 Lee, VWK, McMaster, J, Quigg, H, Findlay, JK, Leversha, L. Ovarian and peripheral blood inhibin concentrations increase with gonadotropin treatment in immature rats. Endocrinology 1981; 108: 2403–405.CrossRefGoogle ScholarPubMed
35 Lee, VWK, McMaster, J, Quigg, H, Leversha, L. Ovarian and circulating inhibin levels in immature female rats treated with gonadotrophin and after castration. Endocrinology 1982; 111: 1849–54.CrossRefGoogle ScholarPubMed
36 McLachlan, RI, Robertson, DM, Burger, HG, de Kretser, DM. The radioimmunoassay of bovine and human follicular fluid and serum inhibin. Mol Cell Endocrinol 1986; 46: 175–85.CrossRefGoogle ScholarPubMed
37 McLachlan, RI, Robertson, DM, Healy, DL, Burger, HG, de Kretser, DM. Circulating immunoreactive inhibin levels during the normal human menstrual cycle. J Clin Endocrinol Metab 1987; 65: 954–61.CrossRefGoogle ScholarPubMed
38 Hamada, T, Watanabe, G, Kokuho, T et al. Radioimmunoassay of inhibin in various mammals. J Endocrinol 1989; 122: 697704.CrossRefGoogle ScholarPubMed
39 Farnworth, PG, Robertson, DM, det Kretser, DM, Burger, HG. Effects of 31 kDa bovine inhibin on FSH and LH in rat pituitary cells in vitro: actions under basal conditions. Endocrinology 1988; 122: 207–13.CrossRefGoogle ScholarPubMed
40 Carroll, RS, Corrigan, AZ, Gharib, SD, Vale, W, Chin, WW. Inhibin, activin, and follistatin; regulation of follicle-stimulating hormone messenger ribonucleic acid levels. Mol Endocrinol 1989; 3: 1969–76.CrossRefGoogle ScholarPubMed
41 Farnworth, PG, Robertson, DM, de Kretser, DM, Burger, HG. The effects of 31 kDa bovine inhibin on FSH and LH in rat pituitary cells in vitro. Antagonism of GnRH and buserelin. J Endocrinol 1988; 119: 233–41.CrossRefGoogle Scholar
42 Findlay, JK, Robertson, DM, Clarke, IJ. Influence of dose and route of administration of bovine follicular fluid and the suppressive effect of purified 31 kilodalton bovine inhibin on plasma FSH in ovariectomized ewes. J Reprod Fertil 1987; 80: 455–61.CrossRefGoogle Scholar
43 Tierney, ML, Goss, NH, Tomkins, SM et al. Physiochemical and biological characterization of recombinant human inhibin A. Endocrinology 1990; 126:3268–70.CrossRefGoogle Scholar
44 DePaolo, LV, Shimonaka, M, Schwall, RH, Ling, N. In vivo comparison of the follicle-stimulating hormone-suppressing activity of follistatin and inhibin in ovariectomized rats. Endocrinology 1991; 128: 668–74.CrossRefGoogle Scholar
45 Rivier, C, Schwall, R, Mason, A, Burton, L, Vaughan, J, Vale, W. Effect of recombinant inhibin on luteinizing hormone and follicle-stimulating hormone secretion in the rat. Endocrinology 1991; 128: 1548–54.CrossRefGoogle ScholarPubMed
46 Fukuda, M, Miyamoto, K, Hasegawa, Y, Ibuki, Y, Igarashi, M. Action mechanism of inhibin in vitro cycloheximide mimics inhibin actions on pituitary cells. Moll Cell Endocrinol 1987; 51: 4150.Google ScholarPubMed
47 Mercer, JE, Clements, JA, Funder, JW, Clarke, IJ. Regulation of FSHβ and common a-subunit mRNA by GnRH and estrogen in the sheep pituitary. Neuroendocrinology 1988; 50: 321–26.CrossRefGoogle Scholar
48 Wang, QF, Farnworth, PG, Burger, HG. Purified 31 kDa bovine inhibin on binding of GnRH analog to rat anterior pituitary cells in culture. Endocrinology 1988; 2161–66.CrossRefGoogle Scholar
49 Wang, QF, Farnworth, PG, Findlay, JK, Burger, HG. Inhibitory effect of pure 31 kDa bovine inhibin on GnRH-induced up-regulation of GnRH binding sites in cultured rat anterior pituitary cells in vitro. Endocrinology 1989; 124: 363–68.CrossRefGoogle Scholar
50 Wang, QF, Farnworth, PG, Burger, HG, Findlay, JK. Effect of inhibin on activators of protein kinase-C and calcium mobilising agents which stimulate secretion of gonadotropins in vitro; implication of a post-gonadotropin-releasing hormone (GnRH) receptor effect of inhibin on gonadotropin release. Endocrinology 1990; 126: 3210–17.CrossRefGoogle Scholar
51 DePaolo, LV. Hypersecretion of follicle-stimulating hormone (FSH) after ovariectomy of hypophysectomized, pituitary-grafted rats: implications for local regulatory control of FSH. Endocrinology 1991; 128: 1731–40.CrossRefGoogle ScholarPubMed
52 Roberts, V, Meunier, H, Vaughan, J et al. Production and regulation of inhibin subunits in pituitary gonadotropes. Endocrinology 1989; 124: 552–54.CrossRefGoogle ScholarPubMed
53 Kogawa, K, Nakamura, T, Sugino, K, Takio, K, Titani, K, Sugino, H. Activin-binding protein is present in pituitary. Endocrinology 1991; 128: 1434–40.CrossRefGoogle ScholarPubMed
54 Gospodarowicz, D, Lau, K. Pituitary follicle cells secrete both vascular endothelial growth factor and follistatin. Biochem Biophys Res Commun 1989; 165: 292–98.CrossRefGoogle ScholarPubMed
55 Hsueh, AJ, Dahl, KD, Vaughan, J et al. Heterodimers and homodimers of inhibin subunits have different paracrine action in the modulation of luteinizing hormone-stimulated androgen biosynthesis. Proc Natl Acad Sci USA 1987; 84: 5082–86.CrossRefGoogle ScholarPubMed
56 Ying, S-Y, Becker, A, Ling, N, Ueno, N, Guillemin, R. Inhib and β-type transforming growth factor (TGF-β) have opposite modulating effects on follicle stimulating hormone (FSH)-induced aromatase activity of cultured rat granulosa cells. Biochem Biophys Res Commun 1986; 136: 969–75.CrossRefGoogle Scholar
57 Hutchinson, LA, Findlay, JK, de Vos, FL, Robertson, DM. Effects of bovine inhibin, transforming growth factor-β and bovine activin-A on granulosa cell differentiation. Biochem Biophys Res Commun 1987; 146: 1405–12.CrossRefGoogle ScholarPubMed
58 Sugino, H, Nakamura, T, Hasegawa, Y. Erythroid differentiation factor can modulate follicular granulosa cell functions. Biochem Biophys Res Commun 1988; 153: 281–88.CrossRefGoogle ScholarPubMed
59 Franchimont, P, Croze, F, Demoulin, A, Bologne, R, Hustin, J. Effect of inhibin on rat testicular deoxyribo-nucleic acid (DNA) synthesis in vivo and in vitro. Acta Endocrinol [Copenh] 1981; 98: 312–20.Google Scholar
60 van Dissel-Emiliani, FM, Grootenhuis, AJ, de Jong, FH, de Rooij, DG. Inhibin reduces spermatogonial numbers in testes of adult mice and Chinese hamsters. Endocrinology 1989; 125: 18981903.CrossRefGoogle ScholarPubMed
61 Mather, JP, Attie, KM, Woodruff, TK, Rice, GC, Phillips, DM. Ativin stimulates spermatgonial proliferation in germ-Sertoli cell cocultures from immature rat testis. Endocrinology 1990; 127: 3206–14.CrossRefGoogle Scholar
62 O, W-S, Robertson, DM, de Kretser, DM. Inhibin as an oocyte meiotic inhibitor. Mol Cell Endocrinol 1989; 62: 307–11.Google Scholar
63 Woodruff, TK, Lyon, RJ, Hansen, SE, Rice, GC, Mather, JP. Inhibin and activin locally regulate rat ovarian folliculogenesis. Endocrinology 1990; 127: 31963205.CrossRefGoogle ScholarPubMed
64 Meunier, H, Rivier, C, Evans, RM, Vale, W. Vonadal and extragonadal expression of inhibin α, βA, and βB subunits in various tissues predicts diverse functions. Proc Natl Acad Sci USA 1988; 85: 247–51.CrossRefGoogle Scholar
65 Eto, Y, Takazawa, M, Takano, S, Yokagawa, Y, Shibai, H. Purification and characterization of erythroid differentiation factor (EDF) isolated from human leukemia cell line THP-1. Biochem Biophys Res Commun 1987; 142: 10951103.CrossRefGoogle ScholarPubMed
66 Broxmeyer, HE, Lu, L, Cooper, S, Schwall, RH, Mason, AJ, Nikolics, K. Selective and indirect modulation of human multipotential and erythroid hematopoietic progenitor cell proliferation by recombinant human activin and inhibin. Proc Natl Acad Sci USA 1988; 85: 9052–56.CrossRefGoogle ScholarPubMed
67 Yu, J, Shao, Li-en, Lemas, V. Importance of FSH releasing protein and inhibin in erythrodifferentiation. Nature 1987; 330: 765–67.CrossRefGoogle ScholarPubMed
68 Hedger, MP, Drummond, AE, Robertson, DM, Risbridger, GP, de Kretser, DM. Inhibin and activin regulate [3H]thymidine uptake by rat thymocytes and 3T3 cells in vitro. Mol Cell Endocrinol 1989; 61: 133–38.CrossRefGoogle ScholarPubMed
69 Petraglia, F, Sacerdote, P, Cossarizza, A. Inhibin and activin modulate human monocyte chemotaxis and human lymphocyte interferon-gamma production. J Clin Endocrinol Metab 1991; 72: 496501.CrossRefGoogle ScholarPubMed
70 Sawchenko, PE, Plotsky, PM, Pfeiffer, SW et al. Inhibin β in central neural pathways involved in the control of oxytocin secretion. Nature 1988; 334: 615–17.CrossRefGoogle ScholarPubMed
71 Totsuka, Y, Tabuchi, M, Kojima, I, Shibai, H, Ogata, E. A novel action of activin-A stimulation of insulin secretion in rat pancreatic islets. Biochem Biophys Res Commun 1988; 156: 335–39.CrossRefGoogle ScholarPubMed
72 Mine, T, Kojima, I, Ogata, E. Stimulation of glucose production by activin-A in isolated rat hepatocytes. Endocrinology 1989; 125: 586–91.CrossRefGoogle ScholarPubMed
73 Kitaoka, M, Kojima, I, Ogata, E. Activin-A: a modulator of multiple types of anterior pituitary cells. Biochem Biophys Res Commun 1988; 157: 4854.CrossRefGoogle ScholarPubMed
74 Billestrup, N, Gonzalez-Manchon, C, Potter, E, Vale, W. Inhibition of somatotroph growth and GH biosynthesis by activin-A in vitro. Mol Endocrinol 1990; 4: 356–61.CrossRefGoogle ScholarPubMed
75 Bilezikjian, LM, Corrigan, AZ, Vale, W. Activin-A modulates growth hormone secretion from cultures of rat anterior pituitary cells. Endocrinology 1990; 126: 2369–76.CrossRefGoogle ScholarPubMed
76 Smith, JC, Price, BMJ, Van Nimmen, K, Huylebroeck, D. Identification of a potent Xenopus mesoderminducing factor as a homologue of activin A. Nature 1990; 345: 729–31.CrossRefGoogle ScholarPubMed
77 Thomsen, G, Woolf, T, Whitman, M et al. Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures. Cell 1990; 63: 485–93.CrossRefGoogle ScholarPubMed
78 Mitrani, E, Ziv, T, Thomsen, G, Shimoni, Y, Melton, DA, Bril, A. Activin can induce the formation of axial structures and is expressed in the hypoblast of the chick. Cell 1990; 63: 495501.CrossRefGoogle ScholarPubMed
79 Hashimoto, M, Kondo, S, Sakurai, T, Etoh, Y, Shibai, H, Muramatsu, M. Activin/EDF as an inhibitor of neural differentiation. Biochem Biophys Res Commun 1990; 173: 193200.CrossRefGoogle ScholarPubMed
80 Schubert, D, Kimura, H, LaCorbiere, M, Vaughan, J, Karr, D, Fischer, WH. Activin as a nerve cell survival molecule. Nature 1990; 344: 868–70.CrossRefGoogle ScholarPubMed
81 Matthews, LS, Vale, WW. Expression cloning of an activin receptor, a predicted transmembrane serine kinase. Cell 1991; 65: 973–82.CrossRefGoogle Scholar
82 Yu, WH, McCann, SM, Li, CH. Synthetic human seminal α-inhibin-92 selectively suppresses folliclestimulating hormone release in vivo. Proc Natl Acad Sci USA 1988; 85: 289–92.CrossRefGoogle Scholar
83 Gordon, WL, Liu, WK, Akiyama, K et al. Betamicroseminoprotein ((3-MSP) is not an inhibin. Biol Reprod 1987; 36: 829–35.CrossRefGoogle Scholar
84 Robertson, DM, Klein, R, de Vos, FL et al. The isolation of polypeptides with FSH suppressing activity from bovine follicular fluid which are structurally different to inhibin. Biochem Biophys Res Commun 1987; 149: 744–49.CrossRefGoogle ScholarPubMed
85 Ueno, N, Ling, N, Ying, SY, Esch, F, Shimasaki, S, Guillemin, R. Isolation and partial characterization of follistatin: a single chain M+ 35000 momomeric protein that inhibits the release of follicle stimulatory hormone. Proc Nad Acad Sci USA 1987; 84: 8282–86.CrossRefGoogle Scholar
86 Shimasaki, S, Koga, M, Esch, F et al. Primary structure of the human follistatin precursor and its genomic organization. Biochemistry 1988; 85: 4218–22.Google ScholarPubMed
87 Esch, FS, Shimasaki, S, Mercado, M et al. Structural characterization of follistatin: a novel follicle stimulating hormone release inhibiting polypeptide from the gonad. Mol Endocrinol 1987; 1: 849–55.CrossRefGoogle ScholarPubMed
88 Nakamura, T, Takio, K, Eto, Y, Shibai, H, Titani, K, Sugino, H. Activin-binding protein from rat ovary is follistatin. Science 1989; 247: 836–38.CrossRefGoogle ScholarPubMed
89 Sugawara, S, DePaolo, L, Nakatani, A, Dimarzo, SJ, Ling, N. Radioimmunoassay of follistatin: application for in vitro fertilization procedures. J Clin Endocrinol Metab 1990; 71: 1672–74.CrossRefGoogle ScholarPubMed
90 Klein, R, Robertson, DM, Shukovski, L, Findlay, JK, de Kretser, DM. The radioimmunoassay of follicle stimulating hormone (FSH)-suppressing protein (FSP); stimulation of bovine granulosa cell FSP secretion by FSH. Endocrinology 1991; 128: 1048–56.CrossRefGoogle ScholarPubMed
91 Robertson, DM, Hayward, S, Irby, DC et al. Radioimmunoassay of rat serum inhibin: changes after PMSG stimulation and gonadectomy. Mol Cell Endocrinol 1988; 58: 18.CrossRefGoogle ScholarPubMed
92 Ishida, H, Tashiro, H, Watanabe, N et al. Measurement of inhibin concentrations in men: study of changes after castration and comparison with androgen levels in testicular tissue, spermatic venous blood, and peripheral venous blood. J Clin Endocrinol Metab 1990; 70: 1019–22.CrossRefGoogle ScholarPubMed
93 Robertson, DM, Giacometti, M, Foulds, LM et al. Isolation of inhibin α-subunit precursor proteins from bovine follicular fluid. Endocrinology 1989; 125: 2141–49.CrossRefGoogle ScholarPubMed
94 Sugino, K, Nakamura, T, Takio, N et al. Inhibin α-subunit monomer is present in follicular fluid. Biochem Biophys Res Commun 1989; 159: 1323–29.CrossRefGoogle ScholarPubMed
95 Schneyer, AL, Mason, AJ, Burton, LE, Ziegner, JR, Crowley, WF Jr. Immunoreactive inhibin α-subunit in human serum: implications for radioimmunoassay. J Clin Endocrinol Metab 1990; 70: 1208–12.CrossRefGoogle ScholarPubMed
96 Knight, PG, Beard, AJ, Wrathall, JHM, Castillo, RJ. Evidence that the bovine ovary secretes large amounts of monomeric inhibin a subunit and its isolation from bovine follicular fluid. Mol Endocrinol 1989; 3: 189200.CrossRefGoogle Scholar
97 Robertson, DM, Foulds, LM. Isolation of beta subunit monomer of activin with FSH stimulating activity in vitro, Abstract 1514. Proceedings of the 73rd Annual Meeting of the US Endocrine Society, 1991:409.Google Scholar
98 Drummond, AE, Risbridger, GP, de Kretser, DM. The involvement of Leydig cells in the regulation of inhibin secretion by the testis. Endocrinology 1989; 125:510–15.CrossRefGoogle ScholarPubMed
99 McLachlan, RI, Matsumoto, AM, Burger, HG, de Kretser, DM, Bremner, WJ. Relative roles of follicle-stimulating hormone and luteinizing hormone in the control of inhibin secretion in normal men. J Clin Invest 1988; 82: 880–84.CrossRefGoogle ScholarPubMed
100 Burger, HG, Tiu, SC, Bangah, ML, de Kretser, DM. Human chorionic gonadotrophin raises serum immunoreactive inhibin levels in men with hypogonadotrophic hypogonadism. Reprod Fertil Dev 1990; 2: 137–44.CrossRefGoogle ScholarPubMed
101 Risbridger, G, Clements, J, Robertson, DM et al. Immuno- and bioactive and inhibin α-subunit expression in rat Leydig cell cultures. Mol Cell Endocrinol 1989; 66: 119–22.CrossRefGoogle ScholarPubMed
102 Roberts, V, Meunier, H, Sawchenko, PE et al. Differential production and regulation of inhibin subunits in rat testicular cell types. Endocrinology 1989; 125: 2350–59.CrossRefGoogle ScholarPubMed
103 Lee, W, Mason, AJ, Schwall, R et al. Secretion of activin by interstitial cells in the testis. Science 1989; 243: 396–98.CrossRefGoogle ScholarPubMed
104 Toebosch, AMW, Robertson, DM, Trapman, J et al. Effects of FSH and IGF-1 on immature Sertoli cells: inhibin a and β subunits mRNA levels and inhibin secretion. Mol Cell Endocrinol 1988; 55: 101105.CrossRefGoogle Scholar
105 Risbridger, GP, Hancock, A, Robertson, DM et al. Follitropin (FSH) stimulation of inhibin biological and immunological activities by seminiferous tubules and Sertoli cell cultures from immature rats. Mol Cell Endocrinol 1989; 67: 19.CrossRefGoogle ScholarPubMed
106 Robertson, DM, Au, CL, de Kretser, DM. The use of 51Cr for assessing cytotoxicity in an in vitro bioassay for inhibin. Mol Cell Endocrinol 1982; 26: 119–27.CrossRefGoogle Scholar
107 Robertson, DM, Giacometti, MS, de Kretser, DM. The effects of inhibin purified from bovine follicular fluid in several in vitro pituitary cell culture systems. Mol Cell Endocrinol 1986; 46: 2936.CrossRefGoogle ScholarPubMed
108 Tsonis, CG, McNeilly, AS, Baird, DT. Measurement of exogenous and endogenous inhibin in sheep serum using a new and extremely sensitive bioassay for inhibin based on inhibition of ovine pituitary FSH secretion in vitro. J Endocrinol 1986; 110: 341–52.CrossRefGoogle ScholarPubMed
109 Robertson, DM, Tsonis, CG, McLachlan, RI. Comparison of inhibin immunological and in vitro biological activities in human serum. J Clin Endocrinol Metab 1988; 67: 438–43.CrossRefGoogle ScholarPubMed
110 Hasegawa, Y, Miyamoto, K, Iwamura, S, Igarashi, M. Changes in serum concentrations of inhibin in cyclic pigs. J Endocrinol 1988; 118: 211–19.CrossRefGoogle ScholarPubMed
111 Rivier, C, Rivier, J, Vale, W. Inhibin-mediated feedback control of follicle stimulating hormone secretion in the female rat. Science 1986; 234: 205208.CrossRefGoogle ScholarPubMed
112 Bicsak, TA, Tucker, EM, Cappel, S et al. Hormonal regulation of granulosa cell inhibin biosynthesis. Endocrinology 1986; 119: 2711–19.CrossRefGoogle ScholarPubMed
113 Ying, SY, Czvik, J, Becker, A, Ling, N, Ueno, N, Guillemin, R. Secretion of follicle-stimulating hormone and production of inhibin are reciprocally related. Proc Natl Acad Sci USA 1987; 84: 4631–35.CrossRefGoogle ScholarPubMed
114 Schanbacher, B. Radioimmunoassay of inhibin: serum responses to unilateral and bilateral orchidectomy. Endocrinology 1988; 123: 2323–30.CrossRefGoogle ScholarPubMed
115 Knight, PG, Groome, N, Beard, AJ. Development of a two-site immunoradiometric assay for dimeric inhibin using antibodies against chemically synthesized fragments of the α and β subunit. J Endocrinol 1991; 129: R9R12.CrossRefGoogle ScholarPubMed
116 Burger, HG, Yamada, Y, Bangah, ML, McCloud, PL, Warne, GL. Serum gonadotropin, sex steroid and immunoreactive inhibin levels in the first two years of life. J Clin Endocrinol Metab 1991; 72: 682–86.CrossRefGoogle ScholarPubMed
117 Abeyawardene, SA, Vale, WW, Marshall, GR, Plant, TM. Circulating inhibin α concentrations in infant, prepubertal, and adult male rhesus monkeys (Macaca mulatto) and in juvenile males during premature initiation of puberty with pulsatile gonadotrophin-releasing hormone treatment. Endocrinology 1989; 125: 250–56.CrossRefGoogle Scholar
118 Burger, HG, McLachlan, RI, Bangah, ML et al. Serum inhibin concentrations rise throughout normal male and female puberty. J Clin Endocrinol Metab 1988; 67: 689–94.CrossRefGoogle ScholarPubMed
119 Sheckter, CB, McLachlan, RI, Tenover, JS et al. Stimulation of serum inhibin concentrations by GnRH in men with idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab 1988; 76: 1221–24.CrossRefGoogle Scholar
120 Quigley, C, Cowell, C, Jimenez, M et al. Normal or early development of puberty despite gonadal damage in children treated for acute lymphoblastic leukemia. N Eng J Med 1989; 321: 143–51.CrossRefGoogle ScholarPubMed
121 Yamaguchi, M, Mizunuma, H, Miyamoto, K, Hasegawa, Y, Ibuki, Y, Igarashi, M. Immunoreactive inhibin concentrations in adult men: presence of a circadian rhythm. J Clin Endocrinol Metab 1991; 72: 554–59.CrossRefGoogle ScholarPubMed
122 Tenover, JS, McLachlan, RI, Dahl, KD, Burger, HG, de Kretser, DM, Bremner, WJ. Decreased serum inhibin levels in normal elderly men: evidence for a decline in Sertoli cell function with aging. J Clin Endocrinol Metab 1988; 67: 455–59.CrossRefGoogle ScholarPubMed
123 Guerra-Garcia, R, Franco, J, Gonzales, GF. Serum inhibin is inversely correlated with serum FSH levels in adult men. Arch Androl 1989; 22: 3540.CrossRefGoogle ScholarPubMed
124 MacNaughton, JA, Bangah, ML, McCloud, PI, Burger, HG. Inhibin and age in men. Clin Endocrinol 1991; 35: 341–46.CrossRefGoogle ScholarPubMed
125 McLachlan, RI, Matsumoto, AM, Burger, HG, de Kretser, DM, Bremner, WJ. Relative roles of follicle-stimulating hormone and luteinizing hormone in the control of inhibin secretion in normal men. J Clin Invest 1988; 82: 880–84.CrossRefGoogle ScholarPubMed
126 McLachlan, RI, Matsumoto, AM, de Kretser, DM, Burger, HG, Bremner, WJ. Follicle-stimulating hormone is required for quantitatively normal inhibin secretion in men. J Clin Endocrinol Metab 1988; 67:13051308.CrossRefGoogle ScholarPubMed
127 McLachlan, RI, Finkel, DM, Bremner, WJ, Snyder, PJ. Serum inhibin concentrations before and during gonadotropin treatment in men with hypogonadotropic hypogonadism: physiological and clinical implications. J Clin Endocrinol Metab 1990; 70: 1414–19.CrossRefGoogle ScholarPubMed
128 Fingscheidt, U, Weinbauer, GF, Khan, SA, Nieschlag, E. Follicle-stimulating hormone stimulates inhibin in the serum of male monkeys (Macaca mulatto). Acta Endocrinol (Copenh) 1990; 122: 96100.Google Scholar
129 Jockenhovel, F, Fingsheidt, U, Khan, SA, Behre, HM. Nieschlag E. Bio and immuno-activity of FSH in serum after intramuscular injection of highly purified urinary human FSH in normal men. Clin Endocrinol 1990; 33: 573–84.CrossRefGoogle ScholarPubMed
130 Bagatell, CJ, McLachlan, RI, de Kretser, DM et al. A comparison of the suppressive effects of testosterone and of a new potent GnRH antagonist on gonadotrophin and inhibin levels in normal men. J Clin Endocrinol Metab 1989; 69: 4348.CrossRefGoogle ScholarPubMed
131 de Kretser, DM, McLachlan, RI, Robertson, DM, Burger, HG. Serum inhibin levels in normal men and men with testicular disorders. J Endocrinol 1989; 120:517–23.CrossRefGoogle ScholarPubMed
132 Tsatsoulis, A, Robertson, DM, Shalet, SM et al. Plasma inhibin levels in men with chemotherapy induced severe damage to the seminiferous epithelium. Clin Endocrinol 1988; 29: 659–65.CrossRefGoogle ScholarPubMed
133 Reddi, K, Wickings, EJ, McNeilly, AS, Baird, DT, Hillier, SG. Circulating bioactive follicle stimulating hormone and immunoreactive inhibin levels during the normal human menstrual cycle. Clin Endocrinol 1990; 33: 547–57.CrossRefGoogle ScholarPubMed
134 McLachlan, RI, Cohen, NL, Dahl, KD, Bremner, WJ, Soules, MR. Serum inhibin levels during the periovulatory interval in normal women: relationships with sex steroid and gonadotrophin levels. Clin Endocrinol 1990; 32: 3948.CrossRefGoogle ScholarPubMed
135 Davis, SR, Krozowski, Z, McLachlan, RI, Burger, HG. Inhibin gene expression in the human corpus luteum. J Endocrinol 1987; 115: R21R23.CrossRefGoogle ScholarPubMed
136 Smith, KB, Millar, MR, McNeilly, AS, Illingworth, PJ, Fraser, HM, Baird, DT. Immunocytochemical localization of inhibin α-subunit in the human corpus luteum. J Endocrinol 1991; 129: 155–60.CrossRefGoogle ScholarPubMed
137 Basseti, SG, Winters, SJ, Keeping, HS, Zeleznik, AJ. Serum immunoreactive inhibin levels before and after lutecetomy in the cynomolgus monkey (Macaca fascicularis). J Clin Endocrinol Metab 1990; 70: 590–94.CrossRefGoogle Scholar
138 Roseff, SJ, Bangah, ML, Kettel, LM. Dynamic changes in circulating inhibin levels during the luteal-follicular transition of the human menstrual cycle. J Clin Endocrinol Metab 1989; 69: 1033–39.CrossRefGoogle ScholarPubMed
139 McLachlan, RI, Robertson, DM, Healy, DL, de Kretser, DM, Burger, HG. Plasma inhibin levels during gonadotrophin-induced ovarian hyperstimulation for IVF: a new index of follicular function? Lancet 1986; i: 1233–34.CrossRefGoogle Scholar
140 Hughes, EG, Robertson, DM, Handelsman, DJ, Hayward, S, Healy, DL, de Kretser, DM. Inhibin and estradiol responses to ovarian hyperstimulation: effects of age and predictive value for in vitro fertilization outcome. J Clin Endocrinol Metab 1990; 70: 358–64.CrossRefGoogle ScholarPubMed
141 Tsuchiya, K, Hasegawa, Y, Seki, M, Miyamoto, K, Itoh, M, Igarashi, M. Correlation of serum inhibin concentrations with results in an ovarian hyperstimulation program. Fertil Steril 1989; 52: 8894.CrossRefGoogle Scholar
142 Buckler, HM, Healy, DL, Burger, HG. Purified FSH stimulates inhibin production from the human ovary. J Endocrinol 1989; 122: 279–85.CrossRefGoogle ScholarPubMed
143 Tsonis, CG, Hillier, SG, Baird, DT. Production of inhibin bioactivity by human granulosa-lutein cells; stimulation by LH and testosterone in vitro. J Endocrinol 1987; 112: R11R14.CrossRefGoogle ScholarPubMed
144 McLachlan, RI, Cohen, NL, Vale, WW et al. The importance of LH in the control of inhibin and progesterone secretion by the human corpus luteum. J Clin Endocrinol Metab 1989; 68: 1078–85.CrossRefGoogle ScholarPubMed
145 Smith, KB, Fraser, HM. Control of progesterone and inhibin secretion during the luteal phase in the macaque. J Endocrinol 1991; 128: 107–13.CrossRefGoogle ScholarPubMed
146 Schwall, RH, Mason, AJ, Wilcox, JN, Bassett, SG, Zeleznik, AJ. Localization of inhibin/activin subunit mRNAs within the primate ovary. Mol Endocrinol 1990; 4: 7579.CrossRefGoogle ScholarPubMed
147 McLachlan, RI, Healy, DL, Robertson, DM, Burger, HG, de Kretser, DM. Circulating immunoreactive inhibin in the luteal phase and early gestation of women undergoing ovulation induction. Fertil Steril 1987; 48: 10011005.CrossRefGoogle Scholar
148 Qu, J, Vankrieken, L, Brulet, C, Thomas, K. Circulating bioactive inhibin levels during human pregnancy. J Clin Endocrinol Metab 1991; 72:862–66.CrossRefGoogle ScholarPubMed
149 Abe, Y, Hasegawa, Y, Miyamoto, K et al. High concentrations of plasma immunoreactive inhibin during normal pregnancy in women. J Clin Endocrinol Metab 1990; 71: 133–37.CrossRefGoogle ScholarPubMed
150 Kettel, LM, Roseff, SJ, Bangah, ML, Burger, HG, Yen, SSC. Circulating levels of inhibin in pregnant women at term: simultaneous disappearance with estradiol and progesterone after delivery. Clin Endocrinol 1991; 34: 1923.CrossRefGoogle ScholarPubMed
151 McLachlan, RI, Healy, DL, Robertson, DM, Burger, HG, de Kretser, DM. The human placenta: a novel source of inhibin. Biochem Biophys Res Commun 1986; 140: 485–90.CrossRefGoogle Scholar
152 Petraglia, F, Sawchenko, P, Lim, ATW, Rivier, J, Vale, W. Localization, secretion, and action of inhibin in human placenta. Science 1987; 237: 187–89.CrossRefGoogle ScholarPubMed
153 Mayo, KE, Cerelli, GM, Spiess, J et al. Inhibin-A subunit cDNAs from porcine ovary and human placenta. Proc Natl Acad Sci USA 1986; 83: 5849–53.CrossRefGoogle ScholarPubMed
154 Illingworth, PJ, Reddi, K, Smith, K, Baird, DT. Pharmacological ‘rescue’ of the corpus luteum results in increased inhibin production. Clin Endocrinol 1990; 33: 323–32.CrossRefGoogle ScholarPubMed
155 McLachlan, RI, Healy, DL, Lutjen, PJ, Findlay, JK, de Kretser, DM, Burger, HG. The maternal ovary is not the source of circulating inhibin levels during human pregnancy. Clin Endocrinol 1987; 27: 663–68.CrossRefGoogle Scholar
156 Petraglia, F, Calza, L, Garuti, GC et al. Presence and synthesis of inhibin subunits in human decidua. J Clin Endocrinol Metab 1990; 71: 487–92.CrossRefGoogle ScholarPubMed
157 Sherman, BM, West, JH, Korenman, SG. The menopausal transition: analysis of LH, FSH, estradiol, and progesterone concentrations during menstrual cycles of older women. J Clin Endocrinol Metab 1976; 42: 629–36.CrossRefGoogle ScholarPubMed
158 MacNaughton, J, Bangah, M, McCloud, P, Hee, J, Burger, HG. Age related changes in follicle-stimulating hormone, luteinising hormone, oestradiol and immunoreactive inhibin in women of reproductive age. Clin Endocrinol 1992 (in press).CrossRefGoogle ScholarPubMed
159 Buckler, HM, Evans, CA, Mamtora, H, Burger, HG, Anderson, DC. Gonadotropin, steroid and inhibin levels in women with incipient ovarian failure during anovulatory and ovulatory rebound cycles. J Clin Endocrinol Metab 1991; 72: 116–24.CrossRefGoogle Scholar
160 Lappöhn, RE, Burger, H, Bouma, J, Bangah, M, Krans, M, de Bruijin, H. Inhibin as a marker for granulosa-cell tumors. N Engl J Med 1989; 321: 790–93.CrossRefGoogle Scholar
161 Healy, DL, Mamers, P, Bangah, M, Burger, HG. Inhibin in 100 suspected ovarian malignancies, Abstract 1497. Proceedings of the 73rd Annual Meeting of the US Endocrine Society, 1991: 405.Google Scholar
162 Yohkaichiya, T, Fukaya, T, Hoshiai, H, Yajima, A, de Kretser, DM. Inhibin a new circulating marker of hydatidiform mole. Br Med J 1989; 298: 1684–86.CrossRefGoogle ScholarPubMed
163 Findlay, JK, Tsonis, CG, Doughton, B et al. Immunisation against the amino terminal peptide (αN) of the alpha 43 subunit of inhibin impairs fertility in sheep. Endocrinology 1989; 124: 3122–24.CrossRefGoogle Scholar
164 Forage, RG, Brown, RW, Oliver, KJ et al. Immunization against an inhibin subunit produced by recombinant DNA techniques results in increased ovulation rate in sheep. J Endocrinol 1987; 114: R1R4.CrossRefGoogle Scholar
53
Cited by