Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-jn9wc Total loading time: 0.264 Render date: 2021-05-14T14:28:41.026Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Succession rules and Deco polyominoes

Published online by Cambridge University Press:  15 April 2002

Elena Barcucci
Affiliation:
Dipartimento di Sistemi e Informatica, Via Lombroso 6/17, 50134 Firenze, Italy; (barcucci@dsi.unifi.it)
Sara Brunetti
Affiliation:
Dipartimento di Sistemi e Informatica, Via Lombroso 6/17, 50134 Firenze, Italy; (brunetti@dsi.unifi.it)
Francesco Del Ristoro
Affiliation:
Dipartimento di Sistemi e Informatica, Via Lombroso 6/17, 50134 Firenze, Italy; (fdr@dsi.unifi.it)
Get access

Abstract

In this paper, we examine the class of "deco" polyominoes and the succession rule describing their construction. These polyominoes are enumerated according to their directed height by factorial numbers. By changing some aspects of the "factorial" rule, we obtain some succession rules that describe various "deco" polyomino subclasses. By enumerating the subclasses according to their height and width, we find the following well-known numbers: Stirling numbers of the first and second kind, Narayana and odd index Fibonacci numbers. We wish to point out how the changes made on the original succession rule yield some new succession rules that produce transcendental, algebraic and rational generating functions.

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below.

References

Barcucci, E., Del Lungo, A., Pergola, E. and Pinzani, R., ECO: A methodology for the Enumeration of Combinatorial Objects. J. Differ. Equations Appl. 5 (1999) 435-490. CrossRef
Barcucci, E., Del Lungo, A. and Pinzani, R., ``Deco'' polyominoes, permutations and random generation. Theoret. Comput. Sci. 159 (1996) 29-42. CrossRef
M. Bousquet-Mélou, q-énumération de polyominos convexes. Publication du LACIM, No. 9 Montréal (1991).
Bousquet-Mélou, M., A method for enumeration of various classes of column-convex polygons. Discrete Math. 151 (1996) 1-25. CrossRef
Delest, M., Gouyou-Beauchamps, D. and Vauquelin, B., Enumeration of parallelogram polyominoes with given bound and site perimeter. Graphs Combin. 3 (1987) 325-339. CrossRef
Delest, M. and Viennot, X.G., Algebraic languages and polyominoes enumeration. Theoret. Comput. Sci. 34 (1984) 169-206. CrossRef
R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley (1989).
F.K. Hwang and C.L. Mallows, Enumerating Nested and Consecutive Partitions. J. Combin. Theory Ser. A 70 (1995) 323-333.
D.E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms. Addison Wesley, Reading Mass (1968).
Kreweras, G., Joint distributions of three descriptive parameters of bridges, edited by G. Labelle and P. Leroux, Combinatoire Énumérative, Montréal 1985. Springer, Berlin, Lecture Notes in Math. 1234 (1986) 177-191. CrossRef
Narayana, T.W., Sur les treillis formés par les partitions d'un entier. C.R. Acad. Sci. Paris 240 (1955) 1188-1189.
N.J.A. Sloane and S. Plouffe, The encyclopedia of integer sequences. Academic Press (1995).

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Succession rules and Deco polyominoes
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Succession rules and Deco polyominoes
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Succession rules and Deco polyominoes
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *