Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-23T02:11:35.502Z Has data issue: false hasContentIssue false

OEDIPE, a software for personalized Monte Carlo dosimetry and treatment planning optimization in nuclear medicine: absorbed dose and biologically effective dose considerations

Published online by Cambridge University Press:  30 September 2014

A. Petitguillaume
Affiliation:
IRSN, Laboratoire d’Evaluation de la Dose Interne, 92262 Fontenay-aux-Roses, France.
M. Bernardini
Affiliation:
Hôpital Européen Georges Pompidou, Service de médecine nucléaire, 75015 Paris, France.
D. Broggio
Affiliation:
IRSN, Laboratoire d’Evaluation de la Dose Interne, 92262 Fontenay-aux-Roses, France.
C. de Labriolle Vaylet
Affiliation:
UPMC, Univ. Paris 06 Bio physics, 75005 Paris, France. Hôpital Trousseau, Service de médecine nucléaire, 75012 Paris, France.
D. Franck
Affiliation:
IRSN, Laboratoire d’Evaluation de la Dose Interne, 92262 Fontenay-aux-Roses, France.
A. Desbrée*
Affiliation:
IRSN, Laboratoire d’Evaluation de la Dose Interne, 92262 Fontenay-aux-Roses, France.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For targeted radionuclide therapies, treatment planning usually consists of the administration of standard activities without accounting for the patient-specific activity distribution, pharmacokinetics and dosimetry to organs at risk. The OEDIPE software is a user-friendly interface which has an automation level suitable for performing personalized Monte Carlo 3D dosimetry for diagnostic and therapeutic radionuclide administrations. Mean absorbed doses to regions of interest (ROIs), isodose curves superimposed on a personalized anatomical model of the patient and dose-volume histograms can be extracted from the absorbed dose 3D distribution. Moreover, to account for the differences in radiosensitivity between tumoral and healthy tissues, additional functionalities have been implemented to calculate the 3D distribution of the biologically effective dose (BED), mean BEDs to ROIs, isoBED curves and BED-volume histograms along with the Equivalent Uniform Biologically Effective Dose (EUD) to ROIs. Finally, optimization tools are available for treatment planning optimization using either the absorbed dose or BED distributions. These tools enable one to calculate the maximal injectable activity which meets tolerance criteria to organs at risk for a chosen fractionation protocol. This paper describes the functionalities available in the latest version of the OEDIPE software to perform personalized Monte Carlo dosimetry and treatment planning optimization in targeted radionuclide therapies.

Type
Article
Copyright
© EDP Sciences, 2014

References

Bolch, W.E., Bouchet, L.G., Robertson, J.S., Wessels, B.W., Siegel, J.A., Howel, R.W., Erdi, A.K., Aydogan, B., Costes, S., Watson, E.E. (1999) MIRD Pamphlet No.17: The dosimetry of nonuniform activity distributions – Radionuclide S values at the voxel level, J. Nucl. Med. 40, 11S-36S. Google ScholarPubMed
Bolch, W.E., Eckerman, K.F., Sgouros, G., Thomas, S.R. (2009) MIRD Pamphlet No.21: A generalized schema for radiopharmaceutical dosimetry – Standardization of nomenclature, J. Nucl. Med. 50, 477-484. Google ScholarPubMed
CEU - Council of the European Union (2013) Council directive 2013/59/EURATOM laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/ 122/Euratom, 5 December 2013, p. 25.
Chiavassa, S., Aubineau-Lanièce, I., Bitar, A., Lisbona, A., Barbet, J., Franck, D., Jourdain, J.R., Bardiès, M. (2006) Validation of a personalized dosimetric evaluation tool (OEDIPE) for targeted radiotherapy based on the Monte Carlo MCNPX code, Phys. Med. Biol. 51, 601-616. Google ScholarPubMed
Cremonesi, M., Ferrari, M., Bartolomei, M., Orsi, F., Bonomo, G., Arico, D., Mallia, A., De Cicco, C., Pedroli, G., Paganelli, G. (2008) Radioembolisation with 90Y-microspheres: dosimetric and radiobiological investigation for multi-cycle treatment, Eur. J. Nucl. Med. Mol. Imaging 35, 2088-2096. Google ScholarPubMed
Dale, R.G. (1985) The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy, Br. J. Radiol. 58, 515-528. Google ScholarPubMed
Dale, R.G. (1989) Radiobiological assessment of permanent implants using tumour repopulation factors in the linear-quadratic model, Br. J. Radiol. 62, 241-244. Google ScholarPubMed
De Carlan, L., Aubineau-Lanièce, I., Lemosquet, A., Borissov, N., Jourdain, J.R., Jeanbourquin, D., Le Guen, B., Franck, D. (2003) Application of new imaging and calculation techniques to activity and dose assessment in the case of a 106Ru contaminated wound, Radiat. Prot. Dosim. 105, 219-223. Google ScholarPubMed
EANM (2013) Radionuclide Metabolic Therapy - Clinical Aspects, Dosimetry and Imaging, ISBN: 978-3-902785-08-4.
Franck, D., Laval, L., Borissov, N., Guillierme, P., Bordy, J.M. (2001) Development of voxelised numerical phantoms using MCNP Monte Carlo code: Application to in vivo measurement, Radioprotection 36, 77-86. Google Scholar
Glatting, G., Bardiès, M., Lassman, M. (2013) Treatment planning in molecular radiotherapy, Z. Med. Phys. 23, 262-269. Google Scholar
Hadid, L., Gardumi, A., Desbrée, A. (2013) Evaluation of absorbed and effective doses to patients from radiopharmaceuticals using the ICRP 110 reference computational phantoms and ICRP 103 formulation, Radiat. Prot. Dosim. 156 (2), 141-159. Google ScholarPubMed
ICRP Publication 38 (1993) Radionuclide transformations – Energy and intensity of emissions, Ann. ICRP 11-13.
O’Doherty, J., Clauss, R., Scuffham, J., Khan, A., Petitguillaume, A., Desbrée, A. (2014) Three dosimetry models of Lipoma Arborescens treated by 90Y synovectomy, Med. Phys. 41 (5), 052501. Google ScholarPubMed
O’Donoghue, J.A. (1999) Implications of nonuniform tumor doses for radioimmunotherapy, J. Nucl. Med. 40, 1337-1341. Google ScholarPubMed
Petitguillaume, A., Bernardini, M., Hadid, L., de Labriolle-Vaylet, C., Franck, D., Desbrée, A. (2014) Three-dimensional personalized Monte Carlo dosimetry in 90Y-microspheres therapy of hepatic metastases: non tumoral liver and lungs radiation protection considerations and treatment optimization, J. Nucl. Med. 55, 405-413. Google Scholar
RCR - The Royal College of Radiologists (2006) Fractionation in radiotherapy: A brief history. In: Radiotherapy dose-fractionation (Board of Faculty of Clinical Oncology, book auth.) pp. 10-13.
SFRO (2007) Guide des procédures de radiothérapie externe, http://www.sfro.org/sfro_pro/media /pdf/guide_procedure_radiotherapie_2007.pdf.
Sgouros, G., Kolbert, K.S., Sheikh, A., Pentlow, K.S., Mun, E.F., Barth, A., Robbins, R.J., Larson, S.M. (2004) Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software, J. Nucl. Med. 45, 1366-1372. Google ScholarPubMed
Wu, Q., Mohan, R., Niemierko, A., Schmidt-Ullrich, R. (2002) Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose, Int. J. Radiat. Oncol. Biol. Phys. 52, 224-235. Google ScholarPubMed